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INTRODUCTION 

Seizures, physiological events in which voluntary control of motor 

activity and mentation are lost, are caused by a massive electrical dis­

charge of large aggregates of neurons. The discharge may remain local­

ized or spread to become generalized and include major portions of the 

brain. Associated with these discharges may be tonic and/or clonic con­

vulsions, loss of consciousness, or both, as well as manifestations of the 

brain regions involved, evoking sensory, motor, autonomic, or ideational 

symptoms. 

Although seizures may be caused by transient attacks of cerebral 

ischemia, withdrawal from drug addiction, or febrile episodes in early 

childhood, most are due to the numerous disease states collectively re­

ferred to as epilepsy. Among the etiological classifications of epilepsy 

employed by the National Institute of Neurological Diseases and Blindness 

(Robb, 1965) are genetic and birth factors, infections, toxins, traumas, 

metabolic disturbances, a^nd neoplasms. However, the etiology of a specif­

ic case of epilepsy is frequently unknown. 

If a cure for the seizures, such as correction of a metabolic dis­

turbance or excision of pathological tissues, is not possible, seizure 

control is attempted with drug therapy. Of the estimated four million 

epileptics in the United States, about half achieve complete control of 

their seizures with anticonvulsant drug therapy, and thirty percent 

achieve partial control (Epilepsy Foundation of America, 1975). The re­

maining 800,000 epileptics are uncontrolled, and as a result may be 

severely handicapped. A recent approach to the control of seizures is 
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electrical stimulation of the cerebellar cortex. Although anticonvulsant 

drug therapy is well-established, cerebellar stimulation as a means of 

seizure control is unproven; preliminary reports and clinical investiga­

tions have provided equivocal results. In particular, optimum stimulation 

parameters are as yet uncertain, and the effectiveness of stimulation 

therapy in comparison with current therapies is uncertain. 

In the present research, models of generalized seizure states are 

evoked by intravenous pentylenetetrazol and electrical stimulation of the 

frontal cerebral cortex. Ccmparisons are made of the anticonvulsant 

efficacy of cerebellar stimulation, phénobarbital and diphenylhydantoin 

in acute, conscious New Zealand albino rabbits. Specifically, cerebellar 

stimulation parameters are determined that are effective in reducing 

seizure activity in these preparations. The elevation of EEG seizure 

thresholds by cerebellar stimulation and anticonvulsant drugs is analyzed 

and an assessment of the efficacy of cerebellar stimulation in comparison 

with phénobarbital and diphenylhydantoin is made. 
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LITERATDRE REVIEW 

Anatomy and Physiology 

The cerebellum (Figure 1) traditionally has been considered to func­

tion in the coordination of muscle movements. However, current research 

has shown that it is involved in neural activity in a much larger scope, 

to include the monitoring of activity of spinal inhibitory interneurons 

and modulation of sensory neural input (Llinas, 1975; Wolfe and Kos, 

1975). 

The cerebellum can be divided into two major sections: an outer 

cortex, and a central region of white matter which includes several pairs 

of aggregates of nerve cells known as the cerebellar nuclei. Afferents to 

and efferents from the cerebellum pass through the cerebellar peduncles 

(superior, middle, and inferior), the connections between the cerebellum 

and the brain stem. Afferent and efferent fiber tracts and their origins 

or terminations are presented in Table 1. The efferent fibers are the 

axons of the cells of the cerebellar nuclei, or the axons of the few 

Purkinje cells which project directly to the vestibular nucleus. 

The cerebellar cortex is divided phylogenetically into two major 

divisions (Figure 2): the older paleocerebellum, consisting of the 

medially located anterior lobe, the parafloccuius, uvula, and pyramis 

(which receive vestibular afferents), and the flocculus and nodulus 

(which receive spinal afferents); and the newer neocerebellum, present 

only in warm-blooded animals, consisting of the posterior lobes, which 
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Figure 1. Cerebellar connections with other central nervous system structures (redrawn from 
Palay and Chan-Palay, 1974). 

D dentate nucleus 
DRG dorsal root ganglion 
dsc dorsal spinocerebellar 
EC external cuneate nucleus 
F fastigial nucleus 
I interpositus nucleus 
i inferior cerebellar peduncle 
m middle cerebellar peduncle 
OL olivary nucleus 
RF reticular formation 
RN red nucleus 
rs reticulospinal tract 
s superior cerebellar peduncle 
V vestibular nucleus 
VA ventroanterior nucleus of the thalamus 
Vin eighth cranial nerve ganglion 

VL ventrolateral nucleus of the thalamus 
vs vestibulospinal tract 
vsc ventral spinocerebellar tract 
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Table 1. Afferent and efferent tracts of the cerebellum 

Afferents 

Tract 

dorsal spinocerebellar 
rostral spinocerebellar 
ventral spinocerebellar 
cuneatocerebellar 
ves tibuloc erebellar 
reticulocerebellar 
olivocerebellar 
pontocerebellar 
pontobulbarcerebellar 
trigeminocerebellar 
tectocerebellar 
rubro cerebellar 

Efferents 

Tract 

cerebelloves tibular 
cerebelloreticular 
cerebellorubral 
cerebello thalamic 
cerebellopallidal 
cerebellonuclear 

Origin 

spinal cord 
spinal cord 
spinal cord 
cuneate nucleus 
vestibular nucleus 
reticular formation 
olivary nucleus 
pontine gray 
pons and medulla 
trigeminal nucleus 
tectum 
red nucleus 

Termination 

vestibular nucleus 
reticular formation 
red nucleus 
thalamus 
globus pallidus 
nuclei of cranial 
nerves 3, 5, 6, 7 

extend laterally as the cerebellar hemispheres. Afferents to the neo-

cerebellum are the corticopontocerebellar fibers. 

On a cellular level (Figure 3), the cortex consists of three con­

centric layers: molecular (outer), Purkinje (middle), and granular 

(inner). These layers are comprised of seven neural elements (five cell 

and two fiber types) arranged throughout the cortex in a precise, regular 

pattern (Llinas, 1975). Two elements, the climbing fibers and the mossy 

fibers, have previously been thought to provide the only input to the 
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Figure 2. Diagram of cerebellar cortex to show principal divisions (redrawn from Fulton, 1955, 
after Dow, 1942). 

c culmen 
D déclive 
F flocculus 
FP fissura prima 
FPL fissura posterolateralis 
L lingula 
U lobulus anslforrois 
LC lobulus centralis 
LP lobulus pararaedianus 
LS lobulus simplex 
PF paraflocculus 
T tuber 
VN vermis ~ nodulus 
VP vermis - pyramis 
VU vermis - uvula 
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Figure 3. Functional relationships among the cells and fibers of the cerebellum. 

Key; BC basket cell 
CF climbing fiber 
GoC Golgl cell 
GrC granule cell 
ICNC Intercerebellar nuclei cell 
MF mossy fiber 
PC Purkinje cell 
PF parallel fiber 
SC stellate cell 



www.manaraa.com

PF 

BC 

Cortex 

PC 

7 V 

GrC 

CF 

ICNC Q 
MF 

r 

sc 

Molecular 

Layer 

J 
JL 

GoC 

Purkinje 

Layer 

Granular 

Layer 

Q f INHIBITORY 

n 9 EXCITATORY 



www.manaraa.com

11 

cortex. However, projections from cerebellar nuclei to the cerebellar 

cortex have recently been reported (Tolbert et al., 1976). These fibers 

are the axons in the afferent tracts listed in Table 1. The axons of a 

third element, the Purkinje cell, provide the only output from the cortex. 

The remaining elements are also neurons: stellate and basket cells 

located in the molecular layer, and granule and Golgi cells located in the 

granular layer. 

The input fibers make excitatory synaptic contacts with both cere­

bellar nuclei cells and cortical cells, while the output fibers make in­

hibitory synaptic contacts with their targets, the cells of the cerebellar 

nuclei and the vestibular nucleus of the brainstem. A mossy fiber input 

to the cerebellar cortex excites granule cells, the only excitatory cells 

within the cortex. Collaterals also excite Golgi cells, whose inhibitory 

outputs turn off the granule cells (feed forward inhibition). The axon of 

a granule cell, which becomes a parallel fiber, excites a Purkin je cell, 

resulting in an increase in the rate of impulses from the Purkinje cell 

axon (see below) to cells within the cerebellar nuclei. The parallel 

fiber also excites basket and stellate cells, whose inhibitory synapses 

shut off or decrease the firing rate of the Purkinje cell. Thus, a mossy 

fiber input ultimately results in a very short-term increase of inhibitory 

impulses frcm a Purkinje cell. Climbing fiber inputs directly excite 

Purkinje cells, again resulting in short-term increases in inhibitory im­

pulses leaving the cortex. Since the stellate and basket cells may have 

synaptic contacts with many Purkinje cells, an excitatory input to one 

Purkinje cell results in a zone of inhibited Purkinje cells around it. 
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Within the cortex there are approximately 3 x 10^° granule cells, 

3 X lO' Purkinje cells, and 2 x 10® stellate and basket cells (Eccles, 

1973). Each mossy fiber excites about 400 granule cells, and each 

Purkinje cell receives approximately 80,000 parallel fiber synapses from 

the granule cell axons. Only one climbing fiber influences a given 

Purkinje cell; however, it makes a massive number of synaptic contacts on 

the cell membrane. 

The electrical activity described above is superimposed on tonic 

firing of all cells within the cerebellar cortex; Purkinje cells in 

particular have a regular, rhythmic discharge rate of 20 to 50/sec 

(Eccles, 1967). Therefore, input patterns to the cortex produce relative 

increases or decreases in Purkinje firing rates, rather than bursts super­

imposed on an electrical silence. 

Fibers leaving the cerebellar nuclei (thought to be primarily 

excitatory) project to both higher and lower centers (Figure 1), often 

forming feedback loops to the cerebellar cortex. Fibers to these higher 

centers can ascend to even higher centers or descend to lower centers, so 

that paths frcm one site to another may be ccmplicated and redundant. 

Cerebellar efferents travel to the thalamus, red nucleus, vestibular 

nucleus, and reticular formation, and from these sites to the cerebral 

cortex, either directly or indirectly. Since the output of the cerebellar 

cortex is entirely inhibitory, it is thought that the cerebellum regulates 

neural activity by selective inhibition of on-going activity. However, 

since a decrease in tonic inhibition can functionally result in a net 

excitatory effect, this simplified view of cerebellar function may not be 

justified. The role that the inhibitory action of Purkinje cells plays in 
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the arrest or suppression of seizures by electrical stimulation of the 

surface of the cerebellum (or by naturally occurring processes), and the 

paths by which the effect is accomplished are not presently known. This 

ignorance of the mechanisms has not precluded the incorporation of cere­

bellar stimulation as a therapeutic adjunct in the control of the epilep­

sies and other movement disorders (Cooper, 1973); however, knowledge of 

such mechanisms would greatly influence the utilization of cerebellar 

stimulation in a clinical setting. Several proposed mechanisms will be 

discussed below. 

Cerebellar Stimulation 

Early investigations 

If the brain is severed just anterior to the pons, the body goes into 

a state of spastic muscular contraction known as decerebrate rigidity. 

This response has been reported in cats, dogs, primates and humans (Dow 

and Mbruzzi, 1958). Sherrington (1897) and Lowenthal and Horsley (1897) 

independently reported that electrical stimulation of the paleocerebellum 

(anterior cerebellum) of dogs or cats could inhibit the extensor hyper-

tonus of decerebrate rigidity, particularly with ipsilateral stimulation. 

Lowenthal and Horsley found the same effect when stimulating the under­

lying white matter and the cerebellar peduncles. These reports were the 

first proof of the inhibitory function of the cerebellum, and are particu­

larly important because they established that the effective stimulus site 

for the inhibition was localized on a specific portion of the cerebellar 

cortex. 
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In the ensuing fifty years, numerous investigations probed the 

mechanisms of the inhibitory effect and attempted to delineate the effec­

tive stimulus sites, but with little success (see Dow and Moruzzi, 1958, 

for an extensive review). Induction coils were employed for stimulation 

in most of the experiments performed up to the middle of the twentieth 

century. Since only brief "faradic shocks" could be produced, an in­

creased response was obtained by an increase in stimulus voltage, result­

ing in a rapid deterioration of the animal preparation. In addition, 

stimulus rates (40-60 Hz) were kept constant and voltages were not meas­

ured. In spite of these criticisms, several important features were 

established. Weed (1914) reported that the inhibitory area in cats was 

limited to the superior vermis, while Cobb et al. (1917) achieved best 

results from the hemispheral portion of the anterior lobe. However, they 

suggested that this might have been due to current spread to the superior 

cerebellar peduncle. Miller and Banting (1922) found the entire anterior 

lobe and part of crus I (ansiform lobe) to be effective sites for inhibi­

tion. Bremer (1922) demonstrated that the inhibitory effect originated 

within the cerebellar areas stimulated, and that both forelimb and hind-

limb rigidity were inhibited by stimulation of the same vermal location, 

ruling out somatotopic organization of the effect. Further experiments 

(Bremer, 1925) showed the effect to differ from spinal inhibition, where 

subtetanizing doses of strychnine eliminate the inhibitory effect and re­

lease the normally masked excitatory component of the ipsilateral flexor 

reflex. The areas found most effective were the anterior lobe and the 

pyramis. Denny-Brown et al. (1929) reported that stimulation at the 
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vermal-hemispheral border of the anterior lobe inhibited decerebrate 

regidity, the crossed extensor reflex, and the knee jerk. Snider et al. 

(1949) showed with cats that cerebellifugal volleys directly inhibited 

spinal neurons, and Mollica et al. (1953) demonstrated that cerebellar 

stimulation inhibited reticular and vestibular neurons. Stella (1944) 

reported that acute ablation of the vermis did not affect inhibition from 

stimulation of the adjacent hemispheral portions of the anterior lobe. 

Inhibition of decerebrate rigidity occurred with dogs and cats only by 

stimulation of the hemispheral part of the culmen, while stimulation of 

the hemispheral part of the lobulus centralis produced an opposite 

facilitory effect. 

With the advent of more sophisticated stimulators which allowed 

variations of frequency, pulse duration and waveform, new effects began to 

be observed. Working with decerebrate cats, Moruzzi (1948a-d) demon­

strated that stimulation of the vermal surface of the anterior lobe pro­

duced results dependent on stimulus frequency: High frequencies resulted 

in inhibition, while low frequencies facilitated the rigidity. One milli­

second rectangular pulses at rates of 30 to 300 Hz inhibited the hyper-

tonus, with thresholds decreasing (down to 0.4-0.6 volts) as frequency was 

increased. At stimulus rates of 2 to 10 Hz and slightly higher intensi­

ties, the inhibitory effect was reversed to a slow increase in the ex­

tensor hypertonus rigidity without change of stimulus site or other 

stimulus parameters. Two possible mechanisms were postulated (Moruzzi, 

1949) for the frequency dependency: Either excitatory and inhibitory 

neurons or neural circuits were intermingled within the cortex. 
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selectively responding to differing frequencies, or the same cerebellar 

units could be excitatory or inhibitory, dependent on the frequency of 

stimulation. 

Similar effects were elicited by Terzuolo (1952, 1954) with 

curarized, decerebrate cats. After injection of tetanizing doses of 

strychnine, convulsive waves occurred in the electrospinogram at 10 to 20 

Hz. Anterior lobe or reticular formation stimulation at 200 Hz blocked 

the convulsive waves, while 18 Hz stimuli increased their frequency. 

Cooling the cerebellum also intensified the convulsive activity. Nulsen 

et al. (1948), while mapping the motor homunculus of the anterior cere­

bellum, found that in the dog, monkey and chimpanzee (but not the cat), an 

increase in the cerebellar stimulus frequency resulted in facilitation 

rather than inhibition of the existing motor movement. 

Moruzzi and Pompeiano (1957) found that stimulation of the vermal 

surface of the anterior lobe with parameters that normally evoked inhibi­

tion produced facilitation of the rigidity when the rostrolateral part of 

the ipsilateral fastigial nucleus had been lesioned. Since the spon­

taneous electrical activity and electrical excitability of the cortex was 

unaltered by the lesion, these findings were interpreted as apparently 

being due to the interruption of specific efferent pathways. They might 

also be interpreted as evidence that high frequency effects were mediated 

by fibers passing through the rostrolateral fastigial nucleus, while low 

frequency effects were mediated by other fiber tracts. Pompeiano (1958) 

also demonstrated that destruction of the rostral one-third of the inter-

positus nucleus rendered the intermediate part of the anterior lobe 
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completely inexcitable. These results, combined with those of Terzuolo 

and others, suggest that the inhibitory effects of cerebellar stimulation 

on decerebrate rigidity were mediated by fastigioreticulospinal pathways. 

Cerebello-cerebral relationships 

While the pathways and neural centers affected by cerebellar stimula­

tion in the arrest of seizures are not presently known, the cerebrum is 

intimately associated with seizure activity, and connections between it 

and the cerebellum are of interest. Interconnections between the cere­

bellum and other central nervous system structures include the reticular 

formation (Terzuolo, 1952, 1954), as well as other prominent fiber tracts 

which pass either directly or indirectly to the vestibular nucleus 

(DeVito et al., 1956), tegmentum and sensory relay nuclei of the thalamus 

(Whiteside and Snider, 1953), red nucleus (Pompeiano, 1957), and cerebrum 

(Henneman et al., 1952). In 1938, Walker demonstrated that stimulation of 

the cerebellum of the cat increased both the amplitude and frequency of 

potentials recorded from the cerebral motor cortex. Dow (1942) showed 

that stimulation of the Sylvian regions of the cerebral cortex of the cat 

evoked action potentials in the culm en, simplex, ansiform, declive, 

tuber, paraflocculus and pyramis, and the above regions plus the uvula in 

the monkey. Henneman et al. (1952) mapped sensory areas on the cere­

bellar cortex which when stimulated produced potentials on corresponding 

sensory areas of the cerebral cortex. Cooke and Snider (1953) also demon­

strated that cerebral stimulation can alter the electrocerebellogram. Dow 

et al. (1962) observed that cerebellar stimulation inhibited cerebral 

photic and auditory evoked potentials. 
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Whiteside and Snider (1953) described two ascending cerebello-

cerebral paths, one through the thalamic sensory relay nuclei, and one 

through the ascending reticular formation. Jansen and Jansen (1955) also 

described the reticular formation pathway in the cat, while Sasaki et al. 

(1976) described the cerebellothalmicocerebral pathway in further detail 

by demonstrating differing cerebral motor projections from the fastigial, 

dentate and interpositus nuclei in the monkey. 

Cerebellar effects on seizure activity 

Several neural centers have been seen to alter seizure activity; 

reticular formation (Fernandez-Guardiola et al., 1961), caudate nucleus 

(LaGrutta et al-, 1971), median raphe nucleus (Kovacs and Zoll, 1974), and 

thalamus (Van Straaten, 1975). However, most interest has centered on the 

cerebellum. The relationship between the cerebellum and the epilepsies 

dates back to a clinical note in 1867 by Hammond where the coincidence of 

cerebellar pathologies and myoclonic epilepsy was noted. Hodskins and 

Yakovlev (1930) in a review of 300 epileptics pointed out a strong corre­

lation between cerebellar atrophy and myoclonic epilepsy. Ten to fifteen 

percent of the 300 were cases of myoclonic epilepsy; of these one-third 

evidenced symptoms of cerebellar pathology and nearly all showed signs of 

cerebellar incoordination (sic). 

Russell (1894) produced generalized convulsions by intravenous injec­

tion of absinthe in dogs, and noted an increase in ipsilateral convulsive 

activity after a unilateral cerebellar ablation. 

Moruzzi (194la-c) found that electrical stimulation of the vermal 

part of the anterior lobe of the cerebellar cortex with an induetorium 
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reduced movements induced by cerebral stimulation and the myoclonic 

twitches produced by the application of strychnine to the cerebral motor 

cortex. He later suggested (Moruzzi, 1950) that seizure discharges ini­

tiated in the cerebral cortex activated some unknown suppressor mechanism 

within the cerebellum which terminated the seizure activity. 

Cooke and Snider (1955) electrically stimulated the cerebral cortex 

of curarized cats at 50-70 volts, 40-60 Hz for five seconds to induce 

generalized seizures, and antagonized them with cerebellar cortical stimu­

lation at 40 volts and 300 Hz for five seconds (paramedian lobe). Stimu­

lation at 12 Hz also alleviated the symptoms, but after, and not during 

the stimulation. Fastigial nucleus stimulation (30 volts, 60 Hz, 4 sec.) 

was also successful. In an effort to "delimit the mechanism" (Cooke and 

Snider, 1955, p. 20), several cerebellar afferents were also stimulated 

and found to be capable of antagonizing the seizure: inferior olive (7 

volts, 60 Hz, 5.5 sec.), brachium pontis (20 volts, 12 Hz, 10.6 sec.), and 

brachium restiformis (40 volts, 20 Hz, 4.3 sec.). No further analysis 

was made of the pathways involved. The choice of stimulus parameters used 

was not explained, and may well have been arbitrary. High frequency cere­

bellar stimulation never facilitated seizures, but low frequencies occa­

sionally did so. 

Iwata and Snider (1959) stimulated the hippocampus of cats (5-15 

volts, 1 msec biphasic, 100 Hz) to trigger seizures which could be partial 

(low voltage levels) or generalized (high voltage levels). Cerebellar 

cortical stimulation (tuber vermis, 7-20 volts, 30-150 Hz, 1 msec bi­

phasic) routinely stopped the seizures. 
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Application of penicillin to the cerebral cortex creates a focal 

seizure pattern similar to that seen with cobalt powder (see below), de­

veloping progressively from intermittent spikes to focal or generalized 

convulsions. By stimulating the anterior cerebellar cortex at 250 Hz, 

0.15-0.4 mA, 1 msec duration, Steriade (1960) was able, in cats, to 

suppress EEG spikes during the early development of the penicillin focus. 

However, the same stimulation of more developed foci resulted in facilita­

tion. Kreindler (1962) also evoked penicillin seizures in cats, followed 

by stimulation at 2.5 Hz, 0.25-1.5 mA, 1 msec duration, applied to both 

the anterior and posterior cerebellar cortices. He was only able to 

achieve inhibition by stimulating before the seizure for 10-15 seconds at 

a high intensity (1.0-1.5 mA). 

In 1962, Dow et al. did a study of focal seizures in rats caused by 

the application of cobalt powder to the frontal lobe of the cerebral 

cortex (see also Dow, 1974). They demonstrated that cerebellectomy or 

cooling of the cerebellum with dry ice significantly increased the seizure 

activity, a finding which was interpreted as support for earlier reports 

on the inhibitory effect of the cerebellum on seizures. Electrical stimu­

lation of the cerebellum during cobalt-induced seizures revealed varying 

degrees of inhibition of the seizures, depending on the extent of damage 

by the cobalt. When cobalt was applied to the cortex, a characteristic 

pattern of development of abnormal EEG activity occurred (Dow, 1974). 

The electrical activity proceeded from paroxysmal slow waves to sharp 

waves to spikes to focal or generalized seizures. During the early 

stages of paroxysmal slow waves and sharp waves, Dow et al. (1962) were 
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able to consistently block this activity using stimulus parameters of 1-5 

volts, 0.3-1.0 msec pulse width, 1-3 sec duration, and 200-400 Hz, applied 

with a bipolar electrode to all major areas of the cerebellar cortex, the 

white matter, or the cerebellar nuclei. During later stages, the stimula­

tion was generally inhibitory, but it occasionally facilitated the abnor­

mal seizure activity. Although the authors were vague about details, the 

facilatory effects may have been due to excessive destruction of the 

cerebral cortex by the cobalt. They stated that low frequency stimulation 

(20-50 Hz) gave inconsistent results, but did not give details or specu­

late on the cause. Their conclusion from these results was that for the 

given experimental conditions, . . the cerebellar influence on the de­

velopment of chronic epileptic patterns is mainly of an inhibitory charac­

ter" (Dow et al., 1962, p. 394). 

Dow (1965) noted that afferent impulses from the periphery, connec­

tions from the hypothalamus, the caudate nucleus, the limbic system, and 

the reticular formation may under some circumstances produce a limiting 

influence on epileptic phenomena; however, the most common effect of 

electrical stimulation of these areas is an epileptic effect, and their 

ablation often enhances epileptic activity. He further stated that while 

cerebellar stimulation occasionally activates or aggravates a seizure, 

its predominant effect is to limit or terminate the convulsion. 

In 1967, Reimer et al. attempted to duplicate the work of Dow et al. 

(1962) using cats, "... even though the epileptogenic effect of cobalt 

was found to be more transient in the cat than the rat" (Reimer et al., 

1967, p. 456). Stimulating electrodes were inserted into the cerebellum 
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to an undisclosed depth, rather than being placed on the surface. Pulses 

of 0.1 msec duration, 4-300 Hz, and 1.0-7.5 volts were applied for 1-10 

seconds, but no effects were seen except for an occasional aggravation or 

initiation of a seizure. 

Possible explanations for the failures of Steriade (1960), Kreindler 

(1962), and Reimer et al. (1967) to routinely stop seizures may be found 

by examination of the stimulus parameters successfully used by Cooper 

(see below) (Cooper et al., 1973a,b); Cooper and Snider, 1974). Steriade 

exceeded the range of frequencies used by Cooper by more than a factor of 

ten and used current levels lower than Cooper's 0.5-3.0 mA range (Cooper 

and Snider, 1974). Kreindler used a very low frequency and the current 

that he considered to be very high was only half that used by Cooper. 

Reimer et al. used a pulse width of 0.1 msec, one-tenth that used by 

Cooper. Species variations, and electrode location, size and material, as 

well as the seizure type, may have contributed to the lack of success. 

The above three investigations employed chemically-induced focal seizures, 

while Cooper studied electrically-induced generalized seizures in monkeys 

and naturally-occurring epileptic seizures in man (mostly generalized). 

In 1969, Mutani et al. investigated seizures produced by the applica­

tion of cobalt to the hippocampus or amygdala in cats. Stimulation of the 

surface of the anterior vermis at 100 Hz, 6 volts, 0.6 msec for one 

second was sufficient to suppress interictal spikes for 10 seconds to 2 

minutes after termination of the stimulus. During a seizure, stimulation 

at 6-13 volts could regularly halt the seizure if it were limited to the 

amygdala or hippocampus. If a seizure had spread to other subcortical 
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structures and the neocortex, cerebellar stimulation stopped seizures if 

applied after the seizure had developed, but had no effect when applied 

during its onset. 

Grimm et al. (1970) used cobalt on the cerebral cortex of squirrel 

monkeys and stimulated the fastigial and dentate nuclei. The nuclei were 

stimulated at 10 Hz and 250-300 Hz, 0.1 msec, to determine threshold 

voltages that would cause EEG desynchronization (alertness); thresholds 

of 0.2-0.3 volts were observed. Monkeys with cobalt-induced seizures were 

then stimulated at three times the threshold levels (0.6-0.9 volts) with 

a cycle of three minutes on and three minutes off, for periods of 8-12 

hours. Analysis of their data . . failed to identify any obvious 

effect of cerebellar stimulation upon amplitude, waveforms, or change in 

burst pattern" (Grimm et al., 1970, p. 134). If a comparison is again 

made with the parameters used by Cooper, the low voltages and short pulse 

width used by Grinm et al. may have been the cause for the negative re­

sults; the program of stimulation may have also contributed. Criteria for 

the selection of stimulus parameters and program were not given. 

Button et al. (1972) used penicillin on the cerebral cortex of cats 

to induce seizures, as had Steriade (1960), stimulating the vermis and 

paramedian lobe of the cerebellar cortex, the dentate and interpositus 

nuclei, and grossly stimulating across the entire cerebellum, from one 

paramedian lobe to the other. Cerebellar cortical stimulation during the 

early stages of a focal seizure usually inhibited the spikes or reduced 

their frequency. Inhibition of a fully developed seizure could also 

usually be demonstrated. In more developed penicillin foci, less reliable 
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partial to complete inhibition of seizures could be achieved with stimula­

tion. Dentate and interpositus stimulation partially inhibited spikes or 

reduced their frequency in over half of the experiments. Parameters of 

200 Hz and 0.1-1.0 mA were used; pulse width was not reported. The cere­

bellum was also grossly stimulated at 0.3-5.0 volts; in four out of five 

experiments the spike frequency was decreased. 

Cooper (1973) investigated the effect of chronic cerebellar stimula­

tion on several neurological abnormalities in seven human patients. He 

reported his results as the following; "Anterior-lobe stimulation at 200 

c/s and 10 volts has greatly decreased ipsilateral rigidity and/or spas­

ticity in 3 patients. Stimulation of the same region at 10 c/s and 10 

volts has ameliorated convulsive disorders in 4 patients. Follow-up in 

these 7 patients is one to six months." Subsequent investigations by 

Cooper and his associates have confirmed and extended these preliminary 

observations (Cooper et al., 1973a; Cooper et al., 1973b; Cooper and 

Oilman, 1973; Cooper et al., 1974; Cooper and Snider, 1974; Riklan et al. 

1974), but no one set of parameters for stimulation has emerged as 

optimal. During the surgical procedure, multiple pairs of platinum disc 

electrodes are placed beneath the dura mater, over both the anterior and 

posterior cerebellar cortices bilaterally, for bipolar stimulation. 

Pulses of 1 msec duration at 7-15 Hz and 5-14 volts are applied after 

surgical recovery, and the optimum parameters and electrode combinations 

are empirically found (Cooper et al., 1974). Stimulation is applied con­

tinuously to alternating areas of the cortex, anterior to posterior, or 

left to right. 
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In addition to human studies. Cooper and Snider (1974) investigated 

in monkeys the effect of frequency variation on seizure arrest. Seizures 

were initiated by stimulation of various motor and sensory areas of the 

cerebral cortex with 40-60 Hz biphasic pulses ranging from 60-90 volts. 

Both human and monkey data strongly indicated that low frequency cere­

bellar stimulation (8-12 Hz) is effective in arresting seizures, both 

naturally occurring (humans) and electrically-induced (monkeys). High 

frequency stimulation (100-300 Hz) was found to prolong and aggravate 

seizures. The authors were unable to rationalize the discrepancy of 

these results with those of Moruzzi (1948a-d) and Dow et al. (1962). 

However, a recent clinical note (Cooper et al., 1976a) reported two 

patients in which 10 Hz stimulation was ineffective, •srtiile 200 Hz stimula­

tion greatly reduced the frequency and severity of seizures. 

Dauth et al. (1974) injected the anesthetic alpha chloralose into 

cats, creating an EEG pattern of "chloralose spikes" and high amplitude 

slow waves. The paramedian lobe of the cerebellar cortex was electrically 

stimulated, suppressing the effects of the chloralose. Four stimulus 

parameters (frequency, current amplitude, pulse duration, and pulse train 

duration) were varied independently in an attempt to delineate optimum 

parameter values. It was found that parameter values of 1-2 msec pulse 

duration, 100-200 Hz, and a 4-10 sec train duration, with inflection 

points near 1 msec, 90 Hz and 2.5 sec, were most effective in suppressing 

the spikes. Above a threshold level of approximately 2 mA, the stimula­

tion current showed a roughly linear relationship to duration of EEG 

spike suppression. 
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Also in 1974, Myers and Bickford investigated chloralose-initiated 

myoclonic seizures in cats and attempted to duplicate the cerebellar 

stimulation sites used by Cooper (1973). Effects on the EEG were not 

discernible fraa the figures shown, but the EMG recordings of the myo­

clonic twitches showed that stimulation of the anterior cerebellar cortex 

at 100-200 Hz, 1 msec, and 2 mA completely suppressed the twitches, al­

though it was followed by a rebound increase after stimulation. When 

stimulation was continued for more than 20 seconds, an escape phenomenon 

occurred as the myoclonus began to reappear. Suppression of the twitches 

and their electrographic correlates was also seen with posterior cortex 

stimulation, but the results were "... less marked than those obtained 

from the anterior position" (Myers and Bickford, 1974, p. 221). Stimula­

tion at 1-10 Hz was ineffective, and facilitation of the myoclonus was 

also observed. 

In an effort to resolve some of the discrepancies of reports on cere­

bellar stimulation where different methods of seizure initiation were 

used, Myers et al. (1975) examined the effects of both acute and chronic 

cerebellar stimulation for enflurane, pentylenetetrazol, penicillin, or 

chloralose seizures in cats. Enflurane (an inhalation anesthetic) in­

spired to deep levels of anesthesia, or intravenous pentylenetetrazol were 

used to trigger grand-mal-type seizures; penicillin given intramuscularly 

was used to model petit-mal epilepsy; and chloralose administered intra-

peritoneally was used to create myoclonic seizures. Cerebellar cortical 

stimulation (1-150 Hz, 0.1 msec, 2-15 volts constant voltage or 1-5 mA 
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constant current) was ineffective in blocking seizures. Again, this may 

have been due to the short pulse width (see above). 

Babb et al. (1974a,b) investigated the two known ascending cere­

bellar efferent pathways using hippocampal cobalt seizures in the cat. 

Stimulation at points along the dentatothalamic pathways during seizures 

prolonged the seizure duration in four out of five cats, and terminated 

the seizure of a fifth cat during the clonic phase of the seizures. 

Stimulation along the fastigiobulbar pathways during ictus often termi­

nated seizures during the clonic phase and shortened the average seizure 

duration in seven out of eight cats. The conclusion drawn from these re­

sults was that fastigiobulbar pathways are generally inhibitory and 

dentatotiialamic pathways are generally excitatory to hippocampal cobalt 

seizures, although statistically the results were not conclusive. Stimu­

lation parameters were 0.6 msec, 0.3-1.2 mA, and 5-100 Hz. 

Snider (1974) investigated the effects of cerebellar stimulation on 

electrically induce! seizures, both hippocampal and neocortical cerebral, 

using Macaca mulatta monkeys. Fastigial nucleus stimulation blocked 

hippocampal seizures (3 Hz, 0.8 mA, 5 sec, duration not reported) and 

neocortical cerebral seizures (10 Hz, 0.8 mA, 5 sec; 300 Hz, 1.0 mA, 5 

sec). Stimulation of the cerebellar cortex, both paramedian lobe (10 Hz, 

1.2 mA, 5 sec) and posterior folia of the culmen (10 Hz, 2.6 mA, 5 sec) 

blocked seizures induced by stimulation of the cerebral cortex. Local 

application of 2% Xylocaine to the cerebellar surface eliminated the 

effects of cerebellar stimulation. 
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Maiti and Snider (1975) found that stimulation of the vermis of 

rhesus monkeys for 10 seconds at 10 Hz, 8 volts, 1 msec could block elec­

trically-induced hippocampal seizures, even when applied three minutes 

before the hippocampal stimulation. Cooling of the vermis of cats with a 

cryoprobe increased the duration of amygdaloid paroxysmal discharges from 

6 seconds to as long as 79 seconds. In cats with bilateral fastigial 

nucleus destruction, hippocampal and amygdaloid seizures were lengthened 

and vermal stimulation was ineffective. When CNS catecholamine pathways 

were disrupted by the administration of 6-hydroxydopamine, vermal stimula­

tion was again ineffective, indicating that the cerebellar inhibitory 

mechanisms are mediated through the fastigial nucleus and that catechol-

aminergic fibers are involved. 

Hablitz (1976) tested the effect of cerebellar stimulation on gen­

eralized seizure activity initiated by large intramuscular injections of 

penicillin in cats. Stimulation was applied to vermal and paravermal 

areas of the cortex for alternating 10 second on and off periods at 10 

or 100 Hz, 1 msec duration, and 0.25-2.0 mA. Significant decreases in 

both number and amplitude of paroxysmal bursts result; however, other 

arousing stimuli (unspecified) could also suppress the epileptiform 

discharges. 

Sintimary of effective stimulus parameters 

Reported stimulus parameters which inhibited seizure activity are 

collected in graphical form in Figure 4. In all of the reports of in­

vestigations of cerebellar stimulation, no rationalization was made for 

the choice of stimulation parameters, excepting those repeating the 
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Figure 4. Reported stimulus parameters inhibitory to seizure activity. 

A. Stimulus intensity reported as voltage: 

A Cooke and Snider (1955) 
B Iwata and Snider (1959) 
C Dow et al. (1962) 
D Mutani et al. (1969) 
E Button et al. (1972) 
F Cooper (1973) 
G Maiti and Snider (1975) 
H Cooper et al. (1976a) 

B. Stimulus intensity reported as current (p. 31); 

A Button et al. (1972) 
B Babb et al. (1974a,b) 
C Dauth et al. (1974) 
D îfyers and Bickford (1974) 
E Snider (1974) 
F Bablitz (1976) 
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parameters used by Cooper (1973), and Cooper, who utilized a combination 

of values reported by Moruzzi (1950) and Dow et al, (1962). Nine reports 

mentioned pulse width values; five used 1.0 msec, two used 0.6 msec, one 

used 0.3-1.0 msec, and one used 1-2 msec. Although there is not a well-

defined set of optimum stimulus parameters, it appears that intensities 

near 10 volts or 2 mA, and pulse durations near 1.0 msec have usually been 

sufficient. Effective frequencies are centered at 10 and 200 Hz. Of the 

investigations unsuccessful in affecting seizure activity, three (Reimer 

et al., 1967; Grimm et al., 1970; Myers et al., 1975) used pulse durations 

of 0-1 msec, a value found to be completely ineffective in the parametric 

study of Dauth et al. (1974) and confirmed by the results of other in­

vestigations. As a further confounding factor, stimulation must in some 

cases be chronically administered for periods of days to weeks before 

inhibitory effects are evidenced: With hippocampal alumina cream injec­

tions in Macaca mulatta monkeys, Babb et al. (1975, 1976) experienced a 

four day delay before beneficial effects on seizure activity began to 

occur, while Cooper et al. (1974) experienced similar delays lasting up to 

one month in human epileptics. Finally, Mutani et al. (1969) noted that 

it is impossible to exclude current spread to brain stem structures when 

stimuli exceed 5-10 volts. The criticism of possible current spread was 

voiced by both Dow and Moruzzi (1958) and Dow et al. (1962) with regard 

to the investigation of Cooke and Snider (1955), where levels as high as 

40 volts were used. The spread of current to noncerebellar structures may 

provide an explanation for some of the above negative results. 
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Cerebellar damage 

Concomitant with the use of cerebellar stimulation as a clinical 

therapy has been concern for the morphological implications of its use, 

particularly damage to neurons due to the stimulation. Tennyson et al. 

(1975), Gilman et al. (1975a), Oilman et al. (1975b) described the 

morphological effects of cerebellar stimulating electrodes on one Macaca 

mulatta monkey. Electrodes were found to be embedded in dense lepto-

meningeal (pia and arachnoid) reactive tissue, and examination of under­

lying cortex revealed loss of Purkinje cells and ultrastructural altera­

tions. A lesser degree of cell damage was found beneath nonstimulating 

control electrodes. 

Larson et al. (1976) stimulated the cerebellar cortex in monkeys in 

order to measure current density distributions and investigate possible 

alterations in the blood-brain barrier (BBB), and then implanted stimulat­

ing electrodes in humans for the treatment of spasticity and dyskinesia. 

After stimulating monkey cerebellar cortices, Larson et al. were not able 

to observe changes in the BBB or loss of Purkinje cells after 17 hours of 

stimulation at 4 mA, 100 Hz, and 0.25 msec. However, after two minutes at 

5 mA, definite damage to the BBB was seen (evidenced by the escape of 

Evans blue dye from capillaries), and cell loss was observed bilaterally 

as deep as 3 mm below the surface. Only light microscopic examination was 

performed. Human studies showed improved gait, speech, and ability to 

sit without support. 

Brown et al. (1976, 1977) and Babb et al. (1977) found some thicken­

ing of the leptomeninges, slight thinning of the subjacent molecular layer 
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and decreased Purkinje cells beneath nonstimulating control electrodes in 

monkey studies after 205 hours of stimulation at 10 Hz, 1 msec biphasic, 

2.4-22.0 jicoul/phase. Stimulating electrodes produced changes in pia, 

arachnoid, subjacent Purkinje cells, dendritic arborization, parallel 

fibers, and associated synapses in the molecular layer. Damage to non-

stimulated cortex was attributed to mechanical compression of the molecu­

lar layer and pial vessels. At a stimulus intensity of 0.5 ycoul/phase, 

no damage attributable to the stimulation could be demonstrated. Injury 

to the cortex was proportional to stimulus intensity, and dependent on 

charge density rather than total charge or current. 

Cerebellar atrophy and cortical degeneration have frequently been 

associated with epilepsy and anticonvulsant medications, even to the 

point of nearly complete loss of Purkinje cells (Afifi and Van Allen, 

1968). Rajjoub et al. (1976) compared Purkinje cell densities in cere­

bellar cortical tissue from autopsied control patients (N=5), autopsied 

epileptic patients (N=4), and biopsies from epileptic patients taken at 

the time of implantation of cerebellar stimulating electrodes (N=3). The 

Purkinje cell density of the eight epileptic patients averaged 38% of the 

density found in the five noirmal cerebella. Of the three stimulated (10 

Hz, 3-12 mA, 1 msec capacitively-coupled monophasic) patients, the two 

with severe Purkinje cell loss experienced better seizure control than the 

third, who only had mild Purkinje cell loss. However, the third patient 

also achieved improved seizure control. 

Cooper et al. (1976a) biopsied five patients at the time of implant 

of cerebellar stimulating electrodes. Findings under light microscopic 
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examination were decreased thickness of the molecular layer, decrease in 

numbers of stellate, basket, granule and Golgi cells, and a marked de­

crease or absence of Purkinje cells. One patient who died of unrelated 

causes after 17 months of unsuccessful cerebellar cortical stimulation was 

also examined for cortical damage. The left posterior cerebellar cortex, 

which had not been stimulated or surgically exposed, revealed unthickened 

pia matter, thinning of the molecular and granular layers, and complete 

absence of Purkinje cells. Cortex subjacent to the stimulating electrodes 

(anterior lobe) had moderate thinning of the molecular layer, loss of 

stellate, basket and granule cells, and 50-100% loss of Purkinje cells, 

with no evidence of damage to pia or adjacent cortex. However, compari­

sons between anterior and posterior cortex biopsies may not be meaningful 

in light of Meldrum's (1974) observation that Purkinje cell loss in 

epilepsy occurs predominantly in the posterior lobe. 

Mechanisms and pathways , 

The mechanisms whereby cerebellar stimulation stops, prevents, or 

reduces seizures are unclear. However, because of the anatomy and phys­

iology of the cerebellum, the effect is probably related to a change in 

the code of efferent impulses occurring at the level of the cerebellar 

nuclei: increases or decreases in frequency, or more complex patterns. 

Three possible effects on the cerebellar nuclei cells from the cerebellar 

cortex are 1) an increase or 2) a decrease in the inhibitory impulses from 

Purkinje cell axons, or 3) excitatory antidromic pulses on axon collater­

als of mossy and/or climbing fibers. Bantli et al. (1974) have suggested 

that if Purkinje cell output is increased, the effect may be either 
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mediated by inhibition of a direct loop between the cerebrum and the 

cerebellum, or by an effect on the reticular formation and/or the non­

specific nuclei of the thalamus. Kreindler (1962) noted that lesions of 

some thalamic nuclei (anterior, central, and centre median) resulted in 

increased duration of penicillin seizures in cats. However, the results 

of Babb et al. (1974a,b) tend to rule out the dentato thalamic path in 

favor of fastigiobulbar pathways. Further, Eccles et al. (1975) demon­

strated monosynaptic EPSP's frtm the fastigial nucleus to neurons in the 

medullary reticular formation, and Gloor and Testa (1974) and Testa and 

Gloor (1974) showed with generalized pencillin seizures in cats that in­

creased reticular formation activity decreased or abolished convulsive 

discharges, while decreased reticular activity facilitated seizures. 

Hablitz (1976) stimulated the mesencephalic reticular formation (10-30 Hz, 

1 msec, intensity not reported) and found inhibition of generalized 

penicillin epileptiform activity in cats. 

Bantli et al. (1974) also suggested that cerebellar stimulation could 

be activating mossy fibers, whose activity would decrease the inhibitory 

output of the Purkinje cells, with a resultant Increase in the activity 

of the cerebellar nuclei. Antidromic conduction of these mossy fiber 

Impulses could be stimulating the same or other cerebellar nuclei cells, 

or even reticular or thalamic cells, via axon collaterals. 

Cooper and Snider (1974) proposed that 10 Hz stimuli may be slow 

enough to allow Purkinje cells to escape the normally-occurring inhibition 

by basket, stellate and Golgi cells, thus transmitting a 10 Hz burst of 

inhibition to the cerebellar nuclei which would be functionally projected 



www.manaraa.com

37 

to higher centers; this burst might then be adequate to désynchronisé the 

seizure frequencies. Partial support for this proposal may lie in the 

discovery by Wagner et al. (1975) that cerebral cortical epileptiform 

activity can be suppressed by generalized and localized cortical de-

synchronization. Investigators as early as Walker (1938) have reported 

cortical desynchronization due to cerebellar stimulation. 

Grabow et al. (1974) suggested that the disinhibition observed by 

Ito et al. (1964) in cerebellar nuclei cells could provide an alternative 

explanation of the mechanisms of cerebellar stimulation. Stimulation at 

10 Hz may trigger bursts from Purkinje cells, which are shut off imme­

diately by basket, stellate and Golgi cell activity. The abrupt termina­

tion of inhibition from the Purkinj e cells would result in disinhibition 

(removal or reduction of background inhibition, effectively acting as an 

excitation). The prolonged hyperpolarization of cerebellar nuclei cells 

by the Purkinje cells is followed by a late depolarization of several 

hundred milliseconds duration. The disinhibition may be of sufficient 

magnitude to trigger a train of excitatory impulses from the nuclei. Dis-

inhibition provides a means whereby the purely inhibitory projection from 

Purkinje cells can control their targets, the cerebellar nuclei cells, 

with both inhibition and facilitation. 

Several observations from investigations where cerebellar stimulation 

was not employed provide indirect evidence of an increased Purkinje cell 

firing rate with cerebellar stimulation. Julien (1974) and Julien and 

Halpern (1972) examined the effects of diphenylhydantoin (DPS) and other 

antiepileptic drugs on epileptiform activity (penicillin applied topically 
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to the cerebral cortex) and Purkinje cell discharge rates. DPH has been 

shown to limit the spread of seizure activity rather than suppressing the 

focus. Its mechanism suggests a reinforcement of those systems within the 

brain which serve to limit seizure propagation, rather than a direct 

effect on epileptic tissue as such (Woodbury, 1969). In addition, it 

has often been claimed that long-term administration of high doses of DPH 

can cause cerebellar ataxia and destruction of Purkinje cells, although 

Dam (1972) has disputed Purkinje cell losses with DPH. With single-cell 

recordings using microelectrodes, Julien (1974) found that the administra­

tion of DPH dramatically increased the discharge rate of Purkinje cells, 

followed by a decrease in the discharge rate of cells within Dieter's 

(vestibular) nucleus. Subsequent experiments indicated that phénobarbital 

and diazepam similarly increase Purkinje cell discharge rates, while 

carbamazepine does not. 

Also, Mitra and Snider (1975) demonstrated an increase in Purkinje 

cell activity in the tuber vermis after hippocampal afterdischsrgss, which 

accelerated during the afterdischarges and could last for several seconds 

after the end of the hippocampal activity. Their recordings indicated 

that hippocampal seizure activity is relayed to the cerebellum via the 

nucleus tegmenti pontis, while neocortical seizure activity is relayed 

through the pons, inferior olive, and lateral reticular nucleus, rather 

than through the nucleus tegmenti pontis. 

Conversly, Andersen et al. (1964) measured large IPSP's in Purkinje 

cells after surface stimulation to the lobulus simplex. Stimulation at 

10, 16 and 100 Hz reduced Purkinje firing from a spontaneous rate of 
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200 Hz to complete cessation for 100, 120 and 150 msec respectively after 

each stimulus. 

Wood et al. (1976b) found with human epileptics that cerebellar 

stimulation reduced cerebrospinal fluid concentrations of gamma amino-

butyric acid (GAM). Since GABA is the putative neurotransmitter of 

Purkinje cells. Wood et al. suggested that this might reflect Purkinje 

cell degeneration near the electrodes. However, they also suggested 

(Rajjoub et al., 1976) that it could be an indication that Purkinje cell 

discharge is depressed during cerebellar stimulation. Also, in their 

limited study Rajjoub et al. found that two patients with severe Purkinje 

cell loss achieved better seizure relief with cerebellar stimulation than 

one patient with relatively mild Purkinje cell loss. 

Wood et al. (1976a,c) also found elevated CSF norepinephrine (NE) 

levels after cerebellar stimulation in humans. Since decreased NE brain 

levels increase seizure susceptibility (Browning and Maynert, 1970) and 

increased NE levels reduce seizure susceptibility (Feldberg and Sherwood, 

1954), Wood et al. ascribed anticonvulsant activity to NE and suggested 

that cerebellar stimulation suppression of seizure activity is mediated by 

synaptic release of NE. Decreased GABA with cerebellar stimulation (see 

above) may directly result from NE, since microiontophoretic application 

of NE to cerebellar Purkinje cells arrests their tonic firing (Hoffer 

et al-, 1971). Neural sites implicated as a source of the NE (Wood etal., 

1976c) are locus coerulus innervation of the cerebellar cortex (Nakamura 

and Iwama, 1975), post-ganglionic terminals innervating cerebellar blood 

vessels (Dahi and Nelson, 1964), antidromic activation of the reticular 
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formation by climbing or mossy fibers (Bloedel and Burton, 1970), and 

stimulation of cerebello-rubro-reticular projections and nonspecific 

thalamic nuclei (Bantil and Bloedel, 1975). 

Elevation of seizure threshold by cerebellar stimulation 

Englander et al. (1975) and Johnson et al. (1976) attempted to 

quantify the seizure suppressive effects of cerebellar stimulation in 

studies of the augmenting response of the thalamocortical motor (TCM) 

system of the cat. Pulse pairs were delivered to the ventrolateral 

thalamus at a rate of one pulse pair per second, and the evoked response 

from the second pulse (the augmented response) was measured from a re­

cording electrode array placed over the ipsilateral sensorimotor cortex. 

With the pulse amplitude held constant and the interpulse interval se­

quentially increased from 70 to 500 msec, an excitability curve of re­

sponse amplitude versus pulse pair interval was produced. The resultant 

curve was roughly bell-shaped, with a faster rise than fall, and maximum 

amplitude at pulse intervals of 200-300 msec. In addition, threshold 

curves were obtained by holding the pulse pair interval constant at 200 

msec and increasing the stimulus pulse pair amplitude. These curves 

(response amplitude versus stimulus amplitude) consisted of a horizontal 

line followed by a ramp beginning at the threshold stimulus amplitude. 

The effects of cerebellar stimulation on the excitability of the TCM 

system were conçared with the effects of anticonvulsant drugs. Previous 

studies (Johnson et al., 1975) showed that an unstable condition in the 

TCM system is indicated by an increase in both the height and duration of 

the excitability curve. Cortical epileptiform activity (chloralose 
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spiking) showed a strong correlation with increased height and duration of 

the excitability curve. Constant current stimulation of the contralateral 

paramedian lobe of the cerebellar cortex was performed with continuous 

unidirectional pulses of 1 msec duration, 10 or 100 Hz, and 100 yA to 1 mA. 

currents. It was found that DPH, diazepam, or cerebellar stimulation at 

a frequency of 100 Hz reduced the height of the excitability curve and 

raised the response threshold to thalamic stimulation. Cerebellar stimu­

lation at 10 Hz or ethosuximide reduced the duration of the excitability 

curve. Carbamazepine had an effect different from the other drugs tested; 

however, this effect was not described. DPH was administered intra­

venously until no further reduction in the excitability curve was achieved. 

The total dose was 80 mg/tg (serum concentration of 64 Mg/ml), an extreme­

ly toxic level if maintained chronically. Under these conditions, the 

excitability curve was reduced to approximately 52% of the control. The 

TnaTn'ffli-iffi effect was approximately equivalent to the results found from 

cerebellar stimulation at 100 UA (the DPH curve was 15% below the 100 yA 

curve). The curve reductions due to 250 and 500 yA cerebellar stimulation 

greatly exceeded that obtained with DPH, and in most cases intensities of 

1 mA completely suppressed the excitability curve. The minimum effective 

stimulus intensity was found to be 10 yA. 

None of the anticonvulsant drugs tested had any appreciable effect 

on the threshold value of the threshold curve, but they did reduce the 

slope of the ramp portion. Cerebellar stimulation (100 Hz) reduced the 

slope and had extensive but variable effects on threshold, depending on 

the pulse pair interval. Johnson et al. (1975) were not able to demon-
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strate whether the cerebellar effects upon excitability and threshold 

occurred in the thalamus, the cerebellar cortex, or both, nor were they 

able to determine the pathways over which the changes were effected. 

The above results indicate that cerebellar stimulation is poten­

tially more effective than anticonvulsant drugs in reducing the excita­

bility of the CNS, as measured by the thalamocortical motor system aug­

menting response. However, the investigations were performed on animals 

not subject to seizure activity. In addition, there is some doubt that 

the thalamus plays a direct role in the amelioration of seizure activity 

by cerebellar stimulation (cf. Babb et al., 1974a,b, and Mitra and Snider, 

1975). Although dentatothalamic pathways have been found ineffective, 

there has been no evidence to rule out pathways from the bulbar reticular 

formation to the thalamus. 

Convulsant and Anticonvulsant Mechanisms 

Seizure activity was induced both electrically and chemically in this 

study, and suppressed chemically with two drugs in addition to the cere­

bellar stimulation discussed above. The implementation of these treat­

ments is described in Methods and Materials below. Seizure activity was 

chemically induced by intravenous pentylenetetrazol (pentamethylene-

tetrazol, pentetrazol, METRAZOL, LEPTAZOL, CARDIOZOL, NIORIC), a synthetic 

convulsant herein abbreviated PTZ. The convulsant activity of PTZ has 

been thought to result from an increase in neuronal excitability, but the 

mechanisms are unknown. Experimental evidence (Esplin and Zablocka-

Esplin, 1969) indicates that the effect may be due to a decrease in the 
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time for synaptic recovery, which would augment on-going repetitive 

neuronal activity without influencing nonrecurrent activity (impulses 

occurring at frequencies too low to be influenced by variations in re­

fractory period durations). However, Stone (1976) demonstrated that 

microiontophoretically-applied PTZ depressed the firing rates of 101 

of 116 rat cerebral cortex neurones, exciting only 6. He suggested 

that PTZ might have both excitatory and inhibitory direct effects, and 

that the inhibitory effects might act on normally-inhibitory cells, 

decreasing overall inhibition and increasing ongoing activity (dis-

inhibition). 

Transhemispheral electrical stimulation of the frontal cerebral 

cortices was the second technique utilized to induce seizure activity. 

Electrically-induced seizures are unquestionably initiated by the syn­

chronous activation of large populations of neurons by suprathreshold 

stimuli. However, the mechanisms whereby the hypersynchronous discharges 

are maintained after termination of the stimulation are unknown. A pre­

dominance of cholinergic pathways appears to be involved, since elec-

trically-induced seizures are followed by the appearance of acetyl-

chline (ACh) in the normally ACh-free cerebrospinal fluid, and by ele­

vated cholinesterase levels (Karczmar, 1974; Fink, 1966, 1974). Further, 

the behavioral and electrographic changes following electroconvulsive 

therapy in human patients are blocked by the administration of anti­

cholinergic drugs such as atropine (Fink, 1966). Local elevations of ACh 

levels from the stimulation may be adequate to exceed the hydrolysis 

capabilities of endogenous cholinesterases, resulting in sustained firing 
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of cholinoceptive neurons, further elevating free ACh levels (Fink, 1966). 

In addition, the possible role of massive releases of other neurotrans­

mitters (serotonin, norepinephrine) in response to the stimulation cannot 

be discounted (Fink, 1974). However, the observation that elevated nor­

epinephrine levels reduce seizure susceptibility (Feldberg and Sherwood, 

1954) indicates that the mechanisms of electrically-induced seizures re­

main essentially unresolved. 

Seizure activity was chemically suppressed with two anticonvulsant 

drugs, phénobarbital (phenobarbitone, LTJMIML, PROBITAL, GARDENAL, SENTAL) 

and diphenylhydantoin (phenytoin, DILANTIN, EPTOIN), abbreviated DPH. The 

complete mechanisms of action of phénobarbital are unknown despite exten­

sive investigation (Woodbury, 1969). It has been shown to inhibit post-

tetanic potentiation (FTP), reduce transmission during repetitive dis­

charge, and depress certain pathways with low transmission safety factors. 

The effects may be accomplished by a prolongation of neuron action poten­

tials to several hundred milliseconds, brought about by a blockade of a 

conventional potassium-dependent cell repolarization by interference with 

a voltage-dependent calcium current into the cell necessary for activa­

tion of the repolarization (Kleinhaus and Pritchard, 1976). A second 

mechanism which may be affected is the normal sequestering of intra­

cellular calcium by mitochondria. The increased intracellular calcium 

levels produced by interference with this calcium pathway increases the 

cell membrane potassium conductance, which depresses neuronal excita­

bility and reduces the response to ACh, which in the cerebral cortex acts 

by decreasing potassium conductance (Krnjevic, 1975). Clinically pheno-
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barbital is effective in grand-mal and tonic-clonic focal seizures, status 

epilepticus, and withdrawal seizures. Anticonvulsant effects often occur 

only at levels also producing sedation. 

DPH has been studied clinically and experimentally more thoroughly 

than any other antiepileptic drug (Woodbury and Fingl, 1975; see Bogoch 

and Dreyfus, 1970, 1975). It has been shown to produce its anticonvulsant 

effects by stabilizing excitable membranes and depressing the spread of 

repetitive activity by blocking PTP (Woodbury, 1969). The stabilization 

has been attributed to enhanced active sodium transport out of the cell 

due to increased availability of high-energy phosphates (Woodbury and 

Kemp, 1971). However, more recent evidence suggests that it may be due 

instead to a reduction by DPH of the inward sodium ion flow during action 

potentials and excitatory postsynaptic potentials (Johnson and Ayala, 

1975). DPH is used clinically in the treatment of grand-mal, psychomotor, 

and symptomatic seizures. 
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METHODS AND MATERIALS 

General 

Acute experiments were carried out with adult, male. New Zealand 

albino rabbits^ weighing approximately 2.5-3.5 kg. The animals were 

housed in general animal holding facilities, one or two to a cage, with 

water and standard rabbit pellets available ad libitum, and a lighting 

schedule beginning at 8 AM for eight hours. Animals were prepared and 

recordings generally begun by 10 AM and ended by 5 PM. 

Physiological Methods 

The rabbits were immobilized on a restraint board fitted with a head 

holder. The scalp was incised along the midline from the nasion to the 

2 
upper cervical region with the blade of an electrocautery unit. The 

periosteum was removed and the scalp and musculature retracted with a 

3 
self-retaining Weitlaner retractor , and tissue and bone hemorrhage were 

4 
controlled with the cautery and bone wax respectively. The skull was 

trephined with a No. 51 drill held in an X-Acto model maker's pin vise.^ 

Sorter's Rabbitry, Box 582, Dayton, Iowa 5530. 

2 
Wappler Cold Cautery Scalpel, Model C-450, American Cystoscope 

Makers, Inc., Stanford, Connecticut 06902. 

^SO-3110, V. Mueller, Chicago, Illinois 60648. 

^Lukens Bone Wax, ASR Medical Industries, St. Louis, Missouri 63108. 

^X-Acto, Long Island City, New York 10011. 
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The drill diameter matched that of the electrode barrel so that the elec­

trode assembly was held rigidly in the trephined hole by friction and no 

further fixation was required. 

Concentric tripolar electrodes were used for recording (see Appendix 

A). They consisted of an outer barrel (1.0/1.5 mm inner/outer diameters) 

of stainless steel for cortical recording, and an inner pair of twisted 

0.01 inch, formvar-insulated stainless steel wires^ for depth recording. 

The stainless steel barrel, encased in a brass hub, extended 2 mm from the 

distal end of the hub. The depth electrodes were precut to appropriate 

lengths and 0.5 mm of the tips cleaned of insulation, beveled and separat­

ed by 1-2 mm. The remaining insulation was protected from the barrel by a 

2 
length of polyethylene tubing (PE #60) cut to the same length as the 

barrel. The depth electrodes and PE tubing were fastened within the 

3 
cortical electrode with denture acrylic. After implantation the brass 

hub rested on the skull and the barrel was in contact with the meninges 

and/or cortex. Completed electrodes could be repeatedly used. For 

further detail see Van Meter (1969). Stimulating electrodes were con­

structed using the same barrel and hub assembly with an inner silver ball 

electrode and insulating polyethylene tubing (Appendix A). The silver 

ball electrode was formed from a one inch length of 0.033 inch diameter 

driver Harris, Ltd., Harrison, New Jersey 07829. 

2 
Intramedic Polyethylene Tubing, Clay Adams, Div. of Beeton, 

Dickinson and Co., Parsippany, New Jersey 07054. 

3 
Hygenic Dental Manufacturing Co., Akron, Ohio 44310. 
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silver wire^ heated in a flame until a smooth ball of approximately 1.5 mm 

diameter was formed at the tip. 

Electrodes were manually implanted using stereotaxic coordinates from 

the atlas of Sawyer et al. (1954) (Table 2), with the intersection of the 

mid-sagittal and coronal bone sutures serving as the anterior/posterior 

and lateral origins. Cerebellar cortical stimulating electrodes were 

implanted at the articulation of the parietal, interparietal and supra-

occiptal bones. 

Animals were placed in a dimly lighted enclosure designed to shield 

2 
from radio frequency and other electromagnetic interference. Recordings 

3 
were made with a six channel Grass Model 7 Polygraph and were initiated 

thirty to sixty minutes after all surgical procedures had been completed. 

Bipolar recordings were made between left anterior cortex and basal ol­

factory area (LAC-BOA), right anterior cortex and lenticular nucleus 

(RAC-LN), left posterior cortex and hippocampus (LPC-HPC), right posterior 

cortex and hippocampus (RPC-HPC), left anterior dorsal thalamic nuclei and 

right brain stem reticular formation (THAL-RF), and right anterior cortex 

and left posterior cortex (RAC-LPC). EEG desynchronization response to 

the sensory stimuli of touch, sound and pain were observed after the 

surgical recovery period to detect gross neurological damage frcsn elec­

trode implantation (Van Meter, 1969). Electrode placement was histologi-

Fischer Scientific Co., Chicago, Illinois 50651. 

^Universal Shielding Corp., Plainview, New York 11803. 

3 
Grass Instrument Co., Quincy, Massachusetts 02169. 
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Table 2. Electrode stereotaxic coordinates 

Location 
Anterior (+) 
Posterior (-) Lateral Depth 

Recording: 

BOA 

LN 

TEAL 

LHPC 

RHPC 

RF 

Stimulating; 

Cerebellar 

Cerebral 

+4.0 

+2.0 

-3.0 

-4.5 

-4.5 

-8.5-9.0 

-20.0 

+10.0 

6.5 

6.5 

1.5 

6.5 

6.5 

2.0  

5.0 

4.0 

12.0 

9.0 

10.0 

4.5-5.5 

4.5-5.5 

12.0 

0 . 0  

0.0 

Coordinates given in mm, for New Zealand albino rabbits of 2.5-3.5 
kg body weight. 

cally verified in two preparations using frozen, unstained, 50 ym sections 

and the stereotaxic atlas of McBride and Klemm (1968). Sections were 

mounted without fixation and visually examined with a light microscope. 

All surgical procedures were performed under 1% lidocaine local 

anesthesia.^ Although high doses of lidocaine may produce CNS excitation 

and convulsions (Ritchie and Cohen, 1975), the maximum subcutaneous/ 

intramuscular dose used in these experiments (0.02 mg/kg) was lower by a 

^Astra Pharmaceutical Products, Inc., Worcester, Massachusetts 01606. 
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factor of at least 250 than the minimum intravenous dose of 5 mg/kg found 

to produce EEC effects (Kovalev, 1960). Two limbs served as leads for the 

EKG, which was monitored with a portable CEO EKG device.^ All rabbits 

2 
were euthanized by an intravenous overdose of pentobarbital at the termi­

nation of the experiments. 

Seizure Induction Methods 

3 
Intravenous pentylenetetrazol (PTZ) or direct electrical stimulation 

4 
of the anterior motor cortex with a Grass Model S88 stimulator and Grass 

4 
Model SID 5 stimulus isolation unit at 50 Hz, 1 msec pulse duration and 

2 second train duration was used to evoke generalized seizure activity. 

Electrically-induced generalized myoclonic seizures of 20-60 seconds 

duration were evoked. Stimulus intensities were increased at fifteen 

minute intervals until the desired seizure duration was obtained. 

Pentylenetetrazol seizures were induced by intravenous injections of 10 

and 15 mg/kg, to produce petit-mal and grand-mal EEG seizure patterns. 

For repeated injections, the lateral ear vein was cannulated with a 

one inch, 22 or 20 gauge disposable needle, held in place with a bulldog 

clamp^, connected to a three-way stopcock^ with two male luer-to-hose-end 

^odel 412 Monitor, Tektronix, Inc., Beaverton, Oregon 97005. 

^Med-tech, Inc., Elwood, Kansas 66024. 

3 
Knoll Pharmaceutical Co., Whippany, New Jersey 07981. 

4 
Grass Instrument Co., Quincy, Massachusetts 02169. 

^CH-5312, V. Mueller, Chicago, Illinois 60648. 

SY-23138, V. Mueller, Chicago, Illinois 60648. 
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connectors.^ Aa injection syringe (1 or 2 1/2 cc) was connected to the 

second stopcock opening and a 10 cc syringe with heparinized saline for 

washing in drugs was connected to the third. The stopcock was affixed 

with resin glue to a Plexiglas tube and clamped to the restraint board. 

Anticonvulsant Treatment Methods 

Seizures were antagonized pharmacologically with diphenylhydantoin 

2 3 
(DPH) or phénobarbital injected thirty minutes prior to inducing seizure 

activity. Although peak plasma levels after oral administration may not 

occur for three to twelve hours (Woodbury and Fingl, 1975), more rapid 

effects are achieved by intravenous administration (Meyers et al., 1972). 

The doses used for the anticonvulsant drugs (Barnes and Eltherington, 

1973) were: phénobarbital, 25 mg/kg body weight IV, and DPH, 30 mg/kg IV. 

Phénobarbital (50 mg/ml) was dissolved in distilled water, while di­

phenylhydantoin sodium (50 mg/ml) was prepared as a solution of 40% 

propylene glycol, 10% ethyl alcohol, and 50% water adjusted to pH 12 with 

sodium hydroxide to keep the DPH in solution. 

Cerebellar stimulation was applied across the cerebellar hemispheres 

4 
with a Grass Model SD9 stimulator , with silver ball electrodes located on 

the simplex and ansiform lobe regions of the hemispheres. Stimulation 

'SïY-23068, V. Mueller, Chicago, Illinois 60648. 

2 
Parke, Davis & Co., Detroit, Michigan 48232. 

3 
Merck, Inc., Rahway, New Jersey 07065. 

4 
Grass Instrument Co., Quincy, JIassachusetts 02169. 
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sites anterior to the simplex and ansiform lobes were limited by the 

posterior extension of the superior sagittal sinus and the transverse 

sinuses. The stimulation waveform consisted of a pair of charge-balanced, 

capacitively coupled biphasic pulses, with the positive pulse leading the 

negative. See Results for stimulation parameters. 

Large stimulus artifacts in the EEG tracings during cerebellar stimu­

lation were examined to determine whether they masked or added to EEG 

seizure activity. A 2 Hz sinusoidal voltage from a sine wave generator 

applied between the lenticular nucleus electrodes in a euthanized rabbit 

was seen to add to the 10 Hz cerebellar stimulation artifact. Thus, with 

the "artificial EEG" it was established that the effects of cerebellar 

stimulation could be evaluated visually with the artifact present. 

Experimental Protocol 

The first part of this research consists of the replication of PTZ 

and electrical stimulation of the cerebral cortex as models of seizure 

activity in the rabbit (Longo, 1962; Purpura et al., 1972), and the deter­

mination of parameters for cerebellar stimulation that block or reduce the 

intensity of this seizure activity. 

Elevation of seizure thresholds was evaluated in the second part by 

antagonizing PTZ and electrically-induced seizures with DPH, phénobarbital 

and cerebellar stimulation. DPH does not affect PTZ seizures (Cutting, 

1972), therefore five combinations of convulsant and anticonvulsant treat­

ments resulted. A minimum of five animals was used for each of the five 

combinations. 
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Control seizures were obtained in each experiment, which for PTZ 

seizures consisted of the administration of both seizure doses (10 and 

15 mg/kg), while for electrically-induced seizures the control was a 

myoclonic seizure of 20-60 seconds duration. The anticonvulsant treatment 

was given and the convulsant treatment reapplied with constant increments 

(2 or 3 mg/kg, or 0.1 or 0.2 volts, depending on the initial response of 

the animal) until a seizure similar to the control seizure was obtained. 

The resulting increase in PTZ dosage or stimulation voltage was desig­

nated the seizure threshold elevation ATg. 

Statistical Methods 

Tests of the significance of the elevation of seizure thresholds were 

made using the standard t-test, while comparisons between blocks of ex­

perimental data were made with the modified t-test, the statistic for 

populations where the standard deviations (cr) are unknown and different 

(Walpole and Myers, 1972). The population distributions were assumed to 

be approximately normal. The degrees of freedom for the modified t-test 

are given by: 

V = (si^/ni + sz^/nz)^ 

(sz^/ns)^ 
ni-1 ng-1 

and the t value is given by; 

T' = - Xz 
/si^/ni + S2^/n2 

where 
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s = estimated standard deviation 

X = estimated mean 

n = number of observations 

Tests were made on the null hypothesis that the means are equal (H^: 

yi = Wz), with the alternative hypothesis that one mean is larger than the 

other (H]^; yi > yz) • The critical region for rejection the null hypothe­

sis is T > t , where t is taken from a table of critical values for the 
P P 

t distribution for a given level of significance p, and given degrees of 

freedom, V. Since the value of v calculated from the above formula is 

seldom an integer, the values calculated were rounded off to the next 

lower integer to allow the use of standard tables. 
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RESULTS 

Electroencephalographic responses following intravenous PTZ are shown 

in Figure 5. The physiological and electrophysiological responses to the 

10 and 15 mg/kg doses agreed with those reported by Longo (1962). A dose 

of 10 mg/kg produced the generalized EEG spike-and-wave complex charac­

teristic of petit-mal epilepsy with no concomitant motor activity. Doses 

of 15 mg/kg or greater evoked a brief period of desynchronization followed 

by large (300-600 ]iV) voltage spikes which appeared in the brain in a 

sequence progressing from rostral to caudal regions, gradually decreasing 

in frequency with time frcm roughly 20 to 2 Hz. After 30-60 seconds of 

this activity, post ictal depression ensued with a characteristic iso­

electric baseline. EEG activity resumed within thirty seconds as a 

period of high (500-1000 yV) voltage slow (2-3 Hz) waves, during which 

short seizures could occur. The high voltage fast spikes coincided with a 

tonic convulsion, while the slower spikes were accompanied by clonic con­

vulsions. This sequence of events resembled the clinical pattern of a 

grand-mal seizure. In addition to the responses reported by Longo (1962), 

a myoclonic twitch usually appeared 4-5 seconds after the 10 and 15 mg/kg 

doses of PTZ (Figure 5A). The duration and severity of EEG responses to 

given doses of PTZ varied from animal to animal, and each animal served as 

its own control. Responses to PTZ doses of 5 mg/kg were not as distinc­

tive and easily recognized as responses to 10 and 15 mg/kg doses. Re­

sponses to 5 mg/kg PTZ consisted of 3-5 Hz, 300-400 ]iV bursts in the asso­

ciative cortex lasting 2-4 seconds, which were replaced by desynchroniza-
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Figure 5, Electroencephalographlc responses to Intravenous pentylenetetrazol (PTZ), 

A, Response to 10 mg/kg Injection of PTZ (marker on time channel). The muscle artifact 
from the initial myoclonic twitch is seen Immediately after the injection, followed 
by desynchronization of the EEG, The second segment shows the appearance of 
paroxysms, which was followed (third segment) by 5-6 Hz bursts of spike-and-wave com­
plexes, Note the increased frequency of appearance of the spike-and-wave complexes 
with time, 

B. Response to 15 mg/kg IV PTZ (marker on time channel) (p. 58). The initial desynchro­
nization is followed by high voltage (300-600 JJV) fast waves (20 Hz) coinciding with 
the initiation of a tonic convulsion. The second set of tracings shows the slower 
(down to 2 Hz) high voltage spikes corresponding to clonic convulsions. Abbrevia­
tions for the leads in this and subsequent figures are; LAC; left anterior cortex; 
RAC: right anterior cortex; LPC; left posterior cortex; RFC; right posterior 
cortex; BOA; basal olfactory area; LN; lenticular nucleus; HPC; hippocampus; THAL; 
thalamus; RF; reticular formation. 
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tion (Longo, 1962). Doses of 20 mg/kg resulted in grand-mal seizures of 

longer duration than those seen at 15 mg/kg. 

The EEG tracings acconçanying an electrically-induced seizure are 

shown in Figure 6. Adequate stimuli for induction of a generalized, 20-60 

second myoclonic seizure were found to be 50 Hz, 1 msec pulse duration, 2 

second train duration, and 4.0-7.6 volts. Lower stimulus voltages pro­

duced responses varying from slow waves (1-2 Hz) to short duration myo­

clonic seizures. The control stimulus intensity for a given rabbit could 

elicit seizures of comparable duration over a period of several hours, 

provided that thirty minute recovery periods between seizures were ob­

served. 

Diphasic cerebellar stimulation initiated 15-30 seconds prior to in­

jection of the PTZ blocked the ictal activity or reduced the duration and 

amplitude of spikes, depending on the PTZ dose. The effects on seizure 

activity of changing the parameters of cerebellar stimulation were stud­

ied. Biphasic cerebellar stimulation (10 Hz, 1.5 msec, 4.0 volts), ini­

tiated 15 seconds prior to PTZ (15 mg/kg IV), prevented epileptiform 

activity, with the exception of an initial myoclonic twitch. Interruption 

of the cerebellar stimulation resulted in diffuse 3-4 Hz spikes after a 

0.3-3.6 second delay (mean: 1.3±1.0 sec), while resumption of stimula­

tion again antagonized the spiking (Figure 7). This was repeatedly demon­

strated in this animal. 

The cerebellar stimulation parameters of frequency, pulse duration 

and voltage were examined by holding two constant and varying the third. 

These variations are tabulated in Appendix B. Variations in the frequency 
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Figure 6, Electroencephalographic record of a seizure Induced by electrical stimulation of the 
frontal cerebral cortex. Note the EEG desynchronlzatlon and appearance of spikes In 
the first segment which coincided with the beginning of the myoclonic convulsion. The 
second set of tracings shows the fully-developed seizure, and the third set shows the 
termination of the seizure. Stimulus parameters; 5 volts, 50 Hz, 1 msec pulse dura­
tion, 2 second train duration, Arrows: stimulation on (up) and stimulation off (down). 
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Figure 7. Block of PTZ (15 mg/kg IV) seizure activity by cerebellar stimulation. PTZ had been 
administered approximately three minutes earlier. Note delay in reappearance of spikes 
after cerebellar stimulation is terminated (down arrow). Stimulus parameters: 4 volts, 
10 Hz, 1.5 msec. RAC-LN recording absent due to electrode failure. Arrows: stimulation 
on (up) and stimulation off (down), 
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revealed that 10 Hz was most effective in suppressing spikes, 8 or 12 Hz 

was less effective, and 6 Hz was ineffective. Duration variations showed 

1.5-2.0 msec to be effective, 1.0 msec less effective and 0.15 msec in­

effective. Ineffective stimulus parameters resulted in bursts of spikes 

superimposed on the stimulus artifact. The voltage necessary to prevent 

epileptiform activity varied from animal to animal, and for any dose of 

PTZ the required voltage level decreased with time after the injection. 

At the time of PTZ injection (15 mg/kg) in the above-mentioned experiment, 

a 4.0 volt stimulus was adequate to antagonize the seizure, while a 

stimulus of 3.0 volts or less was insufficient. Four minutes after injec­

tion, 3.6 volts suppressed the spikes and bursts of spikes, while 3.4 

volts did not. Twelve minutes after injection, 2.6 volts was effective 

\^ile 2.2 volts was not. In all instances where inhibition of EEC seizure 

activity was observed, intensities of 3-4 volts were adequate to produce 

the inhibition. A frequency of 10 Hz and pulse durations of 1.0-1.5 msec 

were routinely applied. 

Cerebellar stimulation at 10 Hz inconsistently reduced electrically-

induced seizure activity, and 100 Hz stimuli yielded no effect. On three 

or four occasions seizures were blocked, delayed in onset, or reduced in 

duration or amplitude. However, on a similar number of occasions, 

attempts to induce seizures at 4-7 volts also failed to elicit a seizure, 

even in the absence of anticonvulsants. These effects were not consistent 

in the same animal or from animal to animal. 

Comparisons were made between seizures obtained during the control 

period and seizures obtained after the anticonvulsant treatment. Data 
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measurements of the elevation of EEC seizure thresholds are compiled in 

Table 3. Dose or voltage levels measured during the control period, and 

after presentation of the anticonvulsant treatment are entered as well. 

Also included is the elevation of seizure threshold (AT), defined as the 

difference between the elevated and control levels, and the statistical 

significance of AT. The units for electrical and PTZ seizures differed 

(volts or mg/kg), so AT is also expressed as a percentage of the control 

level (A%) to permit comparisons of the elevations of seizure thresholds 

by different treatments. For each block of data the estima tes of the mean 

(X) and standard deviation (s) of AT and A% are calculated. The statisti­

cal analyses of the six combinations of the four blocks of data from Table 

3 are summarized in Table 4. Elevation of PTZ seizure thresholds by 

phénobarbital was significantly greater than elevation by cerebellar 

stimulation, and elevation of PTZ seizure thresholds by phénobarbital was 

significantly greater than elevation of the threshold for electrical 

seizures by DPS (p<0,05). The other four comparisons showed no signifi­

cant differences. None of the comparisons showed a difference between 

treatments at the 0.01 level. 

Cerebellar stimulation failed to block electrically-induced seizures 

in ten rabbits in a second series of investigations (see above)» In a 

final group of three consecutive experiments, seizures elicited by the 

administration of PTZ (15 mg/kg) were blocked with cerebellar stimulation 

while electrically-induced seizures were unaffected. In two experiments, 

phénobarbital (25 mg/kg IV) was administered, and stimulation at the 

seizure voltage was repeated. 



www.manaraa.com

Table 3. Elevations of seizure thresholds 

Animal V, Significance 
Seizure/trea tmen t number Control^ Elevated^ A%^ level 

PTZ/phénobarbital 50 10 19 9 90 
(N=6) 51 10 18 8 80 

52 15 20 5 33 
53 10 16 6 60 
54 10 18 8 80 
56 5 13 8 160 

X=7.33 %=83.83 
8=1.51 8=42.48 p<0.005 

Electrical/ 58 5.0 9.0 4.0 80 
phénobarbital 59 4.0 5.6 1.6 40 
(N=5) 60 5.6 6.7 1.1 20 

61 7.0 13.0 6.0 86 
62 5.0 6.0 1.0 20 

X=2.74 X=49.20 
s=2.19 s=31.99 p<0.025 

^Units of mg/kg for PTZ seizures and volts for electrical seizures. 

^AT = elevated value minus control value, mg/kg or volts. 

^A% = change in percent. 
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Table 3, (Continued) 

Seizure/treatment 
Animal 
number Control Elevated AT A% 

Significance 
level 

Electrlcal/DPH 63 6.0 9.8 3.8 63 
(N=5) 65 5,4 7.2 1.8 33 

66 5.4 7.4 2.0 37 
67 6.4 7.5 1.1 17 
68 7.6 8.9 1.3 17 

X=2.00 X=33.40 
8=1.07 3=18.89 p<0.01 

PTZ/cerebellar 77 5 7 2 40 
stimulation 78 15 24 9 60 
(N=6) 79 10 13 3 30 

80 15 18 3 20 
81 10 14 4 40 
83 15 17 2 13 

X'>=3.83 X=33.83 
8=2.64 8=16.74 p<0.01 
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Table 4. Statistical comparison of elevations of seizure thresholds 

Seizure/treatment 
comparison® 

Null hypothe-
esis (Hq) 

Alternative 
hypothesis (H^) 

Degrees of 
freedom T' value p<0.05 P<0.01 

PTZ/PHE vs. 
ELEC/PHE 

Hi = M2 Ml > U2 8 1.540 + 

PTZ/PHE vs. 
ELEC/DPH 

Ui = Viz Ml > M2 7 2.614 - + 

PTZ/PHE vs. 
PTZ/CBL 

Ml = li2 Ml > M2 6 2.682 - + 

ELEC/PHE vs. 
ELEC/DPH 

Ui - Uz Ml > M2 6 0.951 + + 

ELEC/PHE vs. 
PTZ/CBL 

]il = U2 Ml > M2 5 0.969 + + 

ELEC/DPH vs. 
PTZ/CBL 

Ml = Mz M2 > Ml 8 0.040 + + 

®PTZ = pentylenetetrazol seizure, ELEC = electrically-induced seizure, PHE = phénobarbital, 
DPH = dlphenylhydantoin, CBL = cerebellar stimulation. 

^+: accept the null hypothesis; reject the null hypothesis. 



www.manaraa.com

69 

In both experiments the electrical seizure activity was blocked by 

the phénobarbital. In one experiment PTZ effects were also antagonized by 

the phénobarbital. Thus it was possible to demonstrate electrical and 

chemical block of chemical seizures, and chemical block of electrical 

seizures, but not electrical block of electrical seizures. These results 

are summarized in Table 5. 

Table 5. Sumnary of anticonvulsant treatment effects on PTZ and elec­
trically-induced seizures 

Anticonvulsant treatment effect^ 

Cerebellar 
Seizure model DPH Phénobarbital stimulation 

PTZ - + + 

Electrical + + -

^+; antagonism of seizure activity; -: no effect on seizure 
activity. 

Cerebellar stimulation changed the patterns of PTZ seizure activity 

in addition to elevation of the seizure thresholds. With increases of 

pentylenetretrazol dose from 10 to a maximum of 24 mg/kg in increments of 

2 or 3 mg/kg (Table 3), a variable electrographic pattern was observed. 

Ten to twenty seconds after injection, a burst of 5-8 seconds of diffuse 

high ançlitude (400-500 yV), high frequency (8-15 Hz) spikes were seen 

(initial spiking), followed by approximately sixty seconds of bursts of 

high amplitude (300-600 yV) spikes at 1-2 Hz (secondary spiking). As the 

dose was increased within the range stated above, the frequency of the 



www.manaraa.com

70 

initial spiking increased to 20 Hz or greater, the low frequency spike 

pattern changed from bursts to continuous, and spike amplitudes increased 

to 500-600 ̂ V. At higher dose levels in some animals the initial burst 

duration increased until it approximated the seizure seen with a 15 mg/kg 

PTZ dose without cerebellar stimulation. With other preparations the 

initial burst remained unchanged with increasing PTZ doses while the 

secondary spiking increased in duration, frequency and amplitude until the 

control seizure was approximated. Figure 8 displays a seizure elevation 

pattern of the latter type. Tracing A shows the EEG after a 15 mg/kg dose 

of PTZ, while tracing B shows the EEG of the same rabbit after a 16 mg/kg 

dose of PTZ with the concurrent application of cerebellar stimulation. 

Finally, in two animals the durations of both the initial burst and the 

secondary spiking did not show an increase, but the frequency and ampli­

tude increased in severity, and a post ictal depression occurred after the 

period of low frequency spikes. At the highest dose levels the EEG became 

isoelectric and death ensued. 

These results differed from those seen with phenobarbital-induced 

elevation of PTZ seizure thresholds, where higher dose levels were re­

quired to evoke the patterns usually seen with 10 and 15 mg/kg PTZ doses. 

Pattern changes observed in the presence of phénobarbital other than the 

elevations of threshold were minimal. The only prominent effect is shown 

in Figure 9, where the responses to 10 mg/kg PTZ doses are graphed. The 

times from injection of PTZ until the first and second paroxysms for both 

the 10 mg/kg control seizure and the 10 mg/kg seizure in the presence of 

phénobarbital were averaged for the first six experiments of Table 3. The 
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Figure 8. Effect of cerebellar stimulation on the electrographic responses to intravenous injec­
tions of PTZ (marker on time channel). 

A. PTZ, 15 mg/kg IV. Compare with the response shown in Figure 5B. (Note difference 
in time scales.) 

B. Effect of cerebellar stimulation (10 Hz, 3 volts, 1.5 msec) on the electrographic 
response to PTZ, 16 mg/kg IV (p. 73). The threshold elevation pattern can be seen 
to appear as a brief high frequency (8 Hz) burst fourteen seconds after the start of 
injection (arrow), followed by occasional spikes at 2 Hz frequency. Tracings taken 
from same animal as Figure 8A. 
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FIGURE 8A. PTZ 15 mg/kg WITHOUT 
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FIGURE 8B. PTZ 16mg/kg WITH CEREBELLAR STIMULATION 
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Figure 8. (Continued) 
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Figure 9. Averaged delay In response to the first and second paroxysmal bursts in the EEG after 
PTZ Injection (10 mg/kg IV), with and without phénobarbital (25 mg/kg IV). The times 
to the first and second bursts with phénobarbital were greater than the times for the 
control seizure at the 0.10 and 0.025 levels of significance, respectively. Standard 
deviations are represented by the vertical bars. 
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average time to the first paroxysm with phénobarbital was greater than the 

time seen during the control seizure at the 0.10 level of significance, 

while the time to the second burst with phénobarbital was greater at the 

0.025 level. Thus the delaying effect of phénobarbital on PTZ paroxysms 

was significant for the second burst only. 

When electrically-induced seizures were antagonized with the anticon­

vulsant drugs phénobarbital and diphenylhydantoin, seizure patterns were 

largely unchanged. However, the increases in seizure amplitude and dura­

tion with increases in stimulation voltage were not synchronized; Spike 

amplitudes matched and then surpassed the spike amplitudes seen during the 

control period before the seizure durations matched those of the control 

period. The effects of these drugs on electrically-induced seizure dura­

tions are graphed in Figure 10. Average seizure durations after the con­

trol voltage and after the control voltage with DPS or phénobarbital were 

both significantly different at the 0.005 level. 

Electrically-induced seizures challenged with cerebellar stimulation 

showed no consistent changes in the seizure patterns. While cerebellar 

stimulation had no effect on seizure duration, a delay in seizure onset 

and a reduction in spike amplitudes was occasionally observed if the cere­

bellar stimulation was applied before seizure induction. However, a more 

frequent effect of cerebellar stimulation on electrically-induced seizures 

was an extension and intensification of seizure activity. Neither re­

sponse was consistently obtainable, and the most common response was no 

effect. 
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Figure 10, Effects of phénobarbital (25 mg/kg IV) and DPH (30 mg/kg IV) on durations of elec­
trically-Induced seizures. Mean durations of seizures with phénobarbital or DPH 
were significantly different at the 0,005 level when compared to control. Standard 
deviations are represented by the vertical bars. 
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DISCUSSION 

The primary question considered in this investigation concerns the 

relative efficacies of cerebellar stimulation, DPS, and phénobarbital as 

anticonvulsant treatments. The other extant study of this topic con­

sidered a highly dissimilar experimental paradigm and reported conflicting 

results. In the present research, seizures were induced in acute, un-

anesthesized rabbits with intravenous PTZ or electrical stimulation of the 

frontal cerebral cortex. Elevations of seizure thresholds by treatment 

with intravenous DPH or phénobarbital, or with cerebellar stimulation were 

not statistically different at the 0.01 level of significance. Two ex­

ceptions were: (1) DPH did not block PTZ seizures, and (2) cerebellar 

stimulation did not block electrically-induced seizures. Englander et al. 

(1975) and Johnson et al. (1976) examined the excitability of the thalamo­

cortical motor (TCM) system in acute, anesthetized cats. Cerebral corti­

cal potentials evoked by pairs of electrical pulses delivered to the 

ventrolateral thalamus were suppressed by cerebellar stimulation or a 

variety of anticonvulsant drugs, including DPH but not phénobarbital. In 

contrast to the results of the present research, cerebellar stimulation 

was markedly superior, completely suppressing the evoked response, while 

DPH only produced a 48% reduction in amplitude. Several differences be­

tween the studies, discussed below, indicate that the results of the 

present research may provide a more accurate assessment of relative 

treatment efficacies. 

The experimental designs of these two studies differed most signifi­

cantly in the electrophysiological activity considered, seizure activity 
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or TCM system excitability. Measurement of the excitability of the TCM 

system provides an indication of the electrical excitability of the 

thalamus and cerebral cortex and the functional patency of the thalamo­

cortical projections. Johnson et al. (1975) noted a reduction in the 

width and amplitude of the TCM system excitability curve coincident with a 

decrease in chloralose spikes in the EEC, and then (Johnson et al., 1976) 

looked for a similar effect on the excitability curve from anticonvulsant 

treatments, with the implication that a decrease in TCM system excita­

bility correlated with anticonvulsant activity. The thalamus and cerebrum 

are involved in most seizure activity, and both thalamic and midbrain 

structures appear to be associated with maintenance, spread and inhibition 

of seizure activity (Goldensohn and Ward, 1975). In addition, an increase 

in the excitability of the TCM system may accompany seizure activity, just 

as a decrease accompanied the cessation of chloralose spikes. However, 

caution must be exercised in ascribing a direct relationship between 

effects on the TCM system and effects on seizure activity, particularly 

since thalamocortical pathways have not been implicated as pathways where­

by cerebellar stimulation inhibits seizure activity. 

One difference between the two studies which makes interpretation and 

comparison difficult is the use of anesthetic (chloralose or pento­

barbital) in the TCM system study. Since general anesthesia significantly 

affects all areas of the nervous system, with different areas often 

affected unequally, interpretation of data obtained under these conditions 

and application of it to conscious animal preparations are difficult. A 

study of the effects of anticonvulsants on the TCM system without general 

anesthesia might produce contrastive results. 
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The cerebellar electrode placement used in the TCM system study did 

not differ greatly from that used in the present research (paramedian vs. 

ansiform and simplex lobes), but the stimuli were applied unilaterally 

rather than transhemispherally, and shifts in placement as small as 1-2 mm 

abolished the observed effects. Further, pulse durations did not differ 

(1 msec), but waveform and frequency did. Unidirectional pulses were 

used, and the above-described results were only obtainable at a frequency 

of 100 Hz. Cerebellar stimuli at 10 Hz only occasionally reduced the 

duration of the excitability curve and had no effect on its amplitude. 

Finally, differences in the drug regimens utilized in the two studies 

are noteworthy. Total DPH doses of 80 mg/kg were injected for the TCM 

system study, a level significantly greater than the 30 mg/kg used in this 

research. In addition, determinations of the excitability curves were not 

made until peak effects of the drug had been obtained, while standard de­

lays of thirty minutes were observed in this investigation. Higher doses 

and peak effects would be expected to increase the efficacy of DPH in 

comparison with cerebellar stimulation; however, when conçared with the 

results of the present research, an opposing result was observed. 

In light of the differences in experimental design and results noted 

above, the effects of anticonvulsant treatments observed with the TCM 

system cannot be taken as indicative of relative effects on induced sei­

zure activity. Rather, TCM system effects produced by the anticonvulsant 

treatments were concomitant to and separate from effects on seizure activ­

ity. While the TCM system may become useful for determining the presence 

or absence of anticonvulsant activity associated with a given compound. 
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direct observation of the effects of anticonvulsants on seizure activity 

would appear to be a more accurate index of relative anticonvulsant activ­

ity. The results of this portion of the present research provide the only 

quantification of the relative anticonvulsant efficacies of cerebellar 

stimulation and anticonvulsant drugs to date. Although the results are 

based on acute stimulation or drug administration challenging induced 

seizures in rabbits, information of this nature will be required to justi­

fy the use of cerebellar stimulation as a standard therapeutic adjunct for 

the treatment of epilepsy. This justification will be necessary for both 

the neurologist or neurosurgeon treating a specific epileptic patient and 

the federal agencies responsible for authorizing the unrestricted use of 

new therapies. 

The second subject of this investigation was parameters of cere­

bellar stimulation. The stimulation parameters developed by Cooper 

(1973) for human use (7-15 Hz, 1 msec, 5-14 volts) were chosen for initial 

evaluation because of their demonstrated clinical efficacy. The cere- . 

bellar stimulating electrodes initially employed in this study consisted 

of silver ball electrodes without the barrel and hub assembly, cemented to 

the skull with denture acrylic. Stimulation produced contraction of ear 

and facial muscles at 10 Hz, indicating activation of brain stem struc­

tures; post-mortem examination revealed that the electrodes had been in­

serted to depths near the cerebellar nuclei and peduncles. Stimulation at 

this depth had no observable effect on seizure activity. This observation 

is of interest in light of the criticism of early investigations that the 

effects attributed to cerebellar stimulation were in fact due to current 
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spread to the brain stem. Subsequently, cerebellar stimulating electrodes 

were mounted in barrel and hub assemblies to insure cortical placement. 

The effective values established in this study were quite narrow: 

Respective changes of 4 Hz, 1.35 msec, or 1 volt in frequency, pulse dura­

tion, or amplitude were adequate to terminate the blocking effect of cere­

bellar stimulation. While the specific values found are in line with 

other published accounts (cf. Figure 4), the high degree of specificity of 

stimulation parameters has not been reported previously. A narrow range 

of pulse durations (1-2 msec) has been consistently utilized in the stud­

ies reporting suppression of seizure activity, buL wide deviations in fre­

quency and amplitude have been successfully used from study to study and 

within the same study. While large variations in amplitude may be 

ascribed to differences in impedance or the use of suprathreshold stimula­

tion, the variation in effective frequencies is not easily explained. In 

particular, effective frequencies in the range of 100-200 Hz have been re­

ported at least as often as those near 10 Hz. One explanation for this 

discrepancy may be suggested by observations made by Cooper et al. 

(1976a,b). A general, but not absolute, observation with their clinical 

investigations has been that low frequency (10 Hz) stimulation is most 

effective with seizure disorders, while high frequency (100-200 Hz) stimu­

lation is most effective with spastic muscle disorders. A possibility 

exists that the several neurophysiological disfunctions affected by cere­

bellar stimulation respond selectively to either high or low frequency 

stimulation because of differences in the physiological mechanisms and 

neural structures involved. This could explain the frequency-dependent 
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^effects of cerebellar stimulation on decerebrate rigidity observed by 

Moruzzi (1948a-d). Similarly, differing seizure states and models may 

respond to different frequency ranges because of differences in the 

physiological mechanisms and neural structures involved in initiating and 

sustaining the seizure activity. An additional difference which might be 

accountable is anatomical species variation. Oilman et al. (1976) sug­

gested that the results and postulated mechanisms and pathways for effect 

from earlier investigations were of questionable applicability to human 

studies since the experiments were performed on cats, a species in which 

the cerebellar efferents differ significantly from man. 

While the parameter study of this investigation is based on one 

rabbit, the values found were effective for all subsequent tests with PTZ. 

A frequency of 100 Hz was tested when attempting to block electrically-

induced seizures, but because of the observed intractability of the 

electroconvulsive model, no conclusion on the efficacy of this frequency 

could be made. PTZ seizures were not tested with 100 Hz cerebellar 

stimuli. 

A number of investigations of the effects of cerebellar stimulation 

reported negative results when attempting to block seizure activity (see 

Literature Review). Since all of these studies utilized parameters sig­

nificantly different from at least one of the ranges determined in the 

present study, the failures may be partially attributable to use of in­

effective stimulus parameters. 

The cerebellar stimulation in this study was applied on an acute 

basis. However, evidence from a number of experimental and clinical 
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investigations indicates that the therapeutic efficacy of electrical 

stimulation of neural tissue may be contingent on chronicity of applica­

tion. In addition to the above mentioned delayed responses to cerebellar 

stimulation for seizures observed by Cooper et al. (1974) and Babb et al. 

(1975), Sweet (1975) observed delays of three weeks in several patients 

when using electrical stimulation of the dorsal columns of the spinal cord 

for pain control, and Cooper et al. (1976b) found continued improvement 

over five month periods -when using cerebellar stimulation to treat 

cerebral palsy. Further, Black et al. (1976) were unable to affect 

alumina- or electrically-induced focal seizures with cerebellar stimula­

tion on an acute basis in monkeys, but found a significant reduction in 

the alumina seizure frequency when the stimulation was applied chronical­

ly. (No report was made of chronic stimulation with electrically-induced 

seizures.) It is therefore possible that certain seizure models, seizure 

models in certain species, or certain seizure models in certain species 

are unaffected or only weakly affected by cerebellar stimulation unless it 

is applied on a chronic basis. This affect might explain the intracta­

bility of electrically-induced seizures in the present research. Although 

cerebellar stimulation has been found effective on an acute basis in 

numerous studies, it is also possible that the same parameters applied on 

a chronic basis would be even more potent. Conversely, further investiga­

tion may show that while some seizure models require chronic stimulation, 

others display no improvement in response with time. 

The seizure activity studied in this investigation was induced by two 

methods, intravenous injection of the systemic convulsant PTZ, and cere­
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bral cortical electroshock. Because of the diverse neuropathies collected 

under the heading of epilepsy, no one model of seizure activity is a good 

representation of that collective disease state. However, sufficient ex­

perimental models of epilepsy have been developed (Purpura et al., 1972) 

which closely replicate specific human seizure types, or specific aspects 

of a seizure type, to insure that a good system is usually available for 

investigating an area of specific research interest. Most experimental 

investigations of cerebellar stimulation in the past have employed models 

of focal seizure activity (topical cobalt, alumina, penicillin, or elec­

trical stimulation); however, clinical studies have centered on epileptics 

with generalized or psychomotor seizure states. Of these two, models of 

generalized seizure states are more easily established, most often with 

electroshock or systemic convulsants. Several features of both PTZ and 

electroshock seizures make them advantageous for comparative studies. 

Since the seizures are individually induced rather than being spontaneous, 

elaborate monitoring systems or long periods of observation are not re­

quired for quantifying seizure activity and anticonvulsant effects. 

Variations of dose or stimulus intensity permit control of the seizure 

severity, so that a standard seizure can be established, both within a 

single animal experiment and from animal to animal. Further, the in­

herent repeatability of the seizures permits a more precise and reliable 

experimental design. 

PTZ seizures are probably the best model of generalized seizures as 

seen in man. Gastaut and Fischer-Williams concluded that "... pentyl­

enetetrazol- induced seizures are the only ones which faithfully reproduce 
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spontaneous epilepsy in man with its hypersynchronous cortical discharge 

and its well-differentiated tonic and clonic phases" (Gastaut and Fischer-

Williams, 1959, p. 341). Although PTZ and electrically-induced seizures 

are routinely used for testing potential anticonvulsant drugs (Mitchell 

and Keasling, 1960), the electroconvulsive model is not as close an 

approximation of seizures in man (Black et al., 1976). 

Several aspects of the PTZ and electroconvulsive models detract from 

their suitability for this study. Because of rapid metabolism and elimi­

nation of PTZ, convulsive doses can be administered repeatedly during the 

course of an experiment (Ayala et al., 1961). Nonetheless, the elimina­

tion of PTZ was not completed within the thirty minute recovery periods 

observed between seizures. Esplin and Woodbury (1956) demonstrated that 

the elimination of a 30 mg/kg subcutaneous PTZ dose was not completed 

until 48 hours after injection. Thus repeated seizure induction with PTZ 

resulted in a progressive accumulation of the drug in the blood, reducing 

the accuracy of measurements of seizure threshold elevations. However, 

since the same effect was encountered with all three PTZ-anticonvulsant 

interactions, the relative efficacies remained essentially unchanged. 

A second problem inherent in PTZ use is created by its route of ad­

ministration. Since the seizures are induced by a chemical in the blood­

stream, they cannot be terminated abruptly; The chemical irritation of 

the nervous system is continually being applied as long as sufficient 

quantities remain. Therefore a brief train of cerebellar stimuli is not 

adequate to block a PTZ seizure, although it is sufficient for epileptic 

seizures in humans and electrically-induced seizures in some anima]s. 
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These decrementing M^od levels of PTZ would account for the observed de­

crease in requisite stimulus intensity with time, and the off and on block 

of seizure activity shown in Figure 7. 

A further complication occurring with the repeated induction of sei­

zures, both PTZ and electrically-induced, is a progressive exhaustion of 

the animal due to the debilitating effects of the convulsions. The 

corporal aspect of the fatigue could be eliminated by paralysis and 

mechanical ventilation; however, the trachaeostomy would necessitate the 

use of a general anesthetic, which would in turn deleteriously affect the 

electroencephalographic data. The CNS fatigue could be reduced by longer 

recovery periods between seizures, but this would be impractical with 

acute experiments. Assessment of the magnitude of the effects of exhaus­

tion and accumulated PTZ was not possible once the anticonvulsant drug had 

been administered, since the control seizure could not be rerun. However, 

in one PTZ-cerebellar stimulation experiment (rabbit #77), the control 

seizure (5 mg/kg PTZ) was increased in duration between 5 and 10% after 

ten PTZ injections in 5 1/2 hours, and the post ictal depression was more 

pronounced. No regular evaluation of this effect was made. 

The most significant failing of these models was the observed in­

tractability of the electroconvulsive model with respect to cerebellar 

stimulation. It is possible that chronic cerebellar stimulation could 

prove to be more effective, yet this may be questioned since Cooper and 

Snider (1974) were able to block electrically-induced focal seizures with 

cerebellar stimulation in acute rhesus monkeys. The difference might be 

due to species differences (see above, Oilman et al., 1976) or, more 
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likely, model differences, since they observed that . . it has not been 

possible to stop the seizure discharges when they have endured and become 

generalized" (Cooper and Snider, 1974, p. 254). Of the differences be­

tween reports citing success and failure in blocking seizure activity, 

including the present research, the most significant may be model differ­

ences. While the total mechanisms of both PT2 and electrically-induced 

seizures remain to be elucidated, there is no question that they differ. 

The cerebellum itself appears to play a role in initiating and/or sus­

taining electroshock seizures, since cerebellectomy in rats raised the 

threshold for electrically-induced seizures but did not affect the 

threshold for PTZ seizures (Raines and Anderson, 1976). Further experi­

mentation will be necessary to determine whether chronic stimulation will 

affect electrically-induced generalized seizures in rabbits, or if they 

are absolutely intractable due to species differences or the electrocon­

vulsive model itself. 

Several questions have been raised by the results of this investiga­

tion and the problems observed with the use of the PTZ and electroconvul­

sive seizure models. Some of them could be resolved with the use of 

chronic animal preparations, both with and without chronic cerebellar 

stimulation. The problems of exhaustion and PTZ build up could be elimi­

nated, and a more accurate assessment of the elevations of seizure 

thresholds by stimulation and anticonvulsant drugs would be possible. 

Since maximal anticonvulsant effects are obtained when a steady state 

blood level is achieved over a period of days or weeks, and cerebellar 

stimulation may prove to be more effective on a chronic basis, the rela-



www.manaraa.com

90 

tive efficacies of the drugs and stimulation may be observed to change. 

Both the control seizures and the measured elevations of seizure threshold 

could be examined for changes with time. Further, the residual suppres­

sive effect of cerebellar stimulation seen when the stimulation is turned 

off (Figure 7) could be investigated. Finally, the question of whether 

cerebellar stimulation on a chronic basis would affect electrically-in­

duced generalized seizures could be resolved. 

A number of larger questions also remain to be resolved. The 

mechanisms whereby cerebellar stimulation suppresses seizure activity are 

not much better understood now than when Cooper introduced the therapy in 

1973. Optimum stimulus sites and parameters, if such exist, have yet to be 

conclusively determined. And finally, the question of the ultimate role 

of cerebellar stimulation remains: Will it evolve into a major thera­

peutic approach to epilepsy, or will it be abandoned as an interesting but 

relatively ineffective medical fad? 
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SUMMARY 

Generalized EEC seizures were elicited in conscious, acute New 

Zealand albino rabbit preparations by 10 or 15 mg/kg intravenous injec­

tions of pentylenetetrazol (PTZ), or by electrical stimulation of the 

frontal cerebral cortex at 50 Hz, 1 msec monophasic pulse duration and 

4.0-7.6 volts for 2 seconds. 

Anticonvulsant treatments were applied, either as an intravenous 

injection of phénobarbital or diphenylhydantoin (DPH), or by electrical 

stimulation of the simplex and ansiform lobes of the cerebellar hemi­

spheres. Cerebellar stimulation parameters of 10 Hz, 1.5-2.0 msec charge-

balanced biphasic pulses, and 3-4 volts were found to be effective in 

attenuating PTZ induced EEC seizure activity. Deviation from these param­

eters markedly decreased the effectiveness of the stimuli. After the 

anticonvulsant treatment, seizures were repeatedly induced with regular 

incremental increases of PTZ dose or electrical stimulation voltage until 

a seizure was evoked that approximated the original in severity and dura­

tion. 

The statistical analysis used four blocks of data: elevations of 

electrically-induced seizure thresholds by phénobarbital and DPH, and 

elevations of PTZ seizure thresholds by phénobarbital and cerebellar 

stimulation. In each case the anticonvulsant treatment was significant 

at a level of p<0.025 or greater. 

The elevations of seizure threshold as measured by the percent change 

in dose or voltage were compared to evaluate the efficacy of cerebellar 

stimulation in comparison with drug therapies as antagonists of general­
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ized seizures. At a significance level of 0.05, the elevation of PTZ 

seizure thresholds by phénobarbital was greater than that of cerebellar 

stimulation and greater than the elevation of electrically-induced seizure 

thresholds by DPH. No difference existed at the 0.01 level of signifi­

cance. 

The statistical significance of the effect of phénobarbital on PTZ 

seizures was further evaluated by measuring the time after a 10 mg/kg PTZ 

injection until the occurrence of the first and second paroxysmal bursts 

in the EEG. The increase in time to the second burst with phénobarbital 

was significant at the 0.025 level, but the increase in time to the first 

burst was not significant. The significance of the effect of phénobarbi­

tal and DPH on electrically-induced seizures was further evaluated by 

measuring the EEG seizure durations in response to the same seizure-in-

ducing voltages, both with and without anticonvulsant drug. The de­

creases in seizure duration with both phénobarbital and DPH were signifi­

cant at the 0.005 level. 

It is concluded that the suppression of generalized seizure activity 

by cerebellar stimulation does not differ significantly from that seen 

with DPH or phénobarbital. 
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APPENDIX A; ELECTRODE CONSTRUCTION 
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Figure Al. Electrode construction. 

A. Partially-assembled recording electrode, showing uncut 
twisted-pair wire depth electrodes, and barrel and hub 
cortical electrode with polyethylene insulation. 

B. Assembled recording electrode with depth electrodes 
cut to desired depth. 

C. Assembled silver ball stimulating electrodes in barrel 
and hub assembly. 
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APPENDIX B: SUMMARY OF PARAMETER INVESTIGATION 



www.manaraa.com

Table Bl. Summary of parameter Investigation 

Time 

Real Elapsed 
Drug 

(dose) 

Stimulus 

Voltage Duration Frequency 
On (4)/ 
Off(-) Effect 

10:06:00 

10:20:20 

11:17:00 

0:00 
0:15 

1:30 
2:00 
6:30 
7:20 
8:10 
8:40 
9:40 
10:45 
11:30 
12:00 
12:40 
14:20 

0:00 
0:15 

1:00 
1:30 
2:40 
3:20 
4:00 
5:20 
6:10 

4,0 1.5 10 
PTZ 

(15 mg/kg) 

PTZ 
(15 mg/kg) 

2.0  '  
2 . 6  
2.6 
2 . 6  
2 . 2  

3.0 
2.0 
2.6 

3.0 

4.0 
3.2 
3.4 
3.6 
3.6 
3.6 

1.5 
1.5 
0.15 
1.5 
1.5 

1.5 
1.5 
1.5 

1.5 

1.5 
1.5 
1.5 
1.5 
1.5 
1.5 

10 
10 
10 
10 
10 

10 
10 
10 

10 

10 
10 
10 
10 

6 
8 

+ 
+ twitch 

diffuse spiking 
+ termination of spiking 
+ diffuse spiking 
+ termination of spiking 
+ diffuse spiking 
+ termination of spiking 
+ diffuse spiking 

Increased spiking 
+ termination of spiking 
+ diffuse spiking 
+ termination of spiking 

diffuse spiking 

+ 
+ twitch 

+ diffuse spiking 
+ termination of spiking 
+ diffuse spiking 
+ decreased spiking 
+ termination of spiking 
+ diffuse spiking 
+ decreased spiking 

> 
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Table Bl. (Continued) 

Stimulus 
Time 

Drug On(+)/ 
Real Elapsed (dose) Voltage Duration Frequency Off(-) Effect 

6:30 3,6 1,5 10 + termination of spiking 
7:10 •3.6 1.0 10 + 
7:40 + single burst 
8:30 3.6 2,0 10 + no spiking 
8:45 diffuse spiking 
9:30 3,6 2.0 12 + 
9:40 + single burst 

11:27:10 10:10 diffuse spiking 
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